

RAPPORT

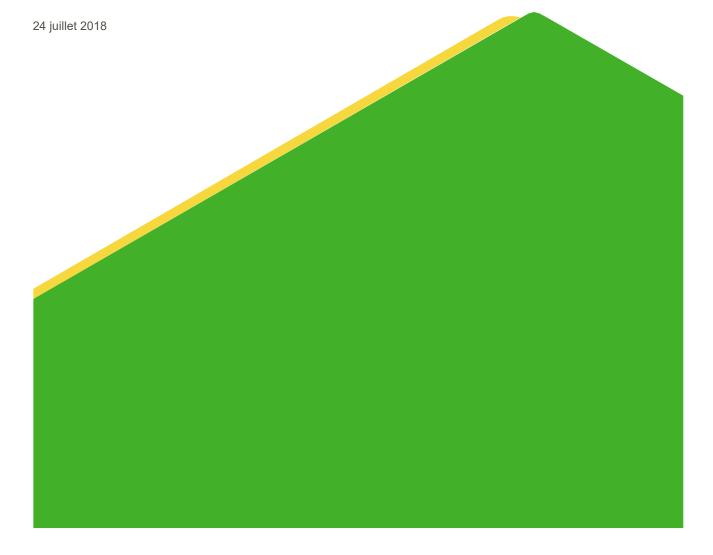
Rapport de base

Albioma le Gol, Saint-Louis (97)

Soumettre à:

Albioma le Gol

1 Route Nationale Le Gol 97450 Saint Louis


Proposé par:

Golder

31 rue Gorge de Loup 69 009 Lyon France

+33 4 72 53 73 10

1791429_R02_V1

Liste de distribution

1 copie - Albioma le Gol

1 copie - Albioma

1 copie - Golder

Version	Date	Objet	Mode de livraison
V0-1	26/06/2018	Version préliminaire	Electronique
V0-2	05/07/2018	Version préliminaire	Electronique
V1	24/07/2018	Version finale	Electronique

Limitations de l'étude

Il est important de lire la présente section avant de prendre connaissance des opinions, conseils, recommandations ou conclusions exprimés dans le présent document.

Le présent rapport a été préparé pour et à la demande d'Albioma le Gol ("le Client"), dans le cadre de la synthèse environnementale de son site, devant être effectué par Golder Associates (Golder) aux termes du mandat de Consultant qui lui a été donné par le Client.

Aucun engagement n'est pris vis-à-vis d'une partie autre que le Client et aucune garantie n'est concédée ni aucune déclaration faite à quelque partie que ce soit, autre que le Client, en ce qui concerne les opinions, conseils, recommandations ou conclusions exprimés dans les présentes.

Il doit être tenu compte, lors de l'examen du présent rapport, des conditions du contrat conclu entre Golder et le Client. Golder a préparé le présent rapport en s'appuyant sur la connaissance que Golder avait, à la date de l'étude :

- des normes ;
- de la technologie ;
- de la législation et des codes français et communautaires en vigueur et applicables.

Toute modification apportée à ces textes est susceptible d'affecter l'exactitude des opinions, conseils, recommandations ou conclusions contenus dans le présent rapport. Cependant, lors de la communication de ses opinions, conseils, recommandations et conclusions, Golder a tenu compte des changements dont la législation et les réglementations sur l'environnement font, à sa connaissance, actuellement l'objet. Après la remise du présent rapport, Golder ne pourra être tenu d'informer le Client de tels changements ou de leurs éventuelles répercussions.

Golder reconnaît avoir été mandaté en partie pour ses connaissances et son expérience en matière de questions liées à l'environnement. Golder s'engage à étudier et à analyser toutes les informations qui lui seront fournies à la lumière de ses connaissances et de son expérience, et de toutes autres informations connues de Golder. Sous réserve de toute incompatibilité ou contradiction avec les informations déjà en sa possession, Golder est en droit de se fonder sur toutes les informations qui lui sont fournies et d'en assumer l'exactitude, sans vérification indépendante, et Golder n'est aucunement tenu de vérifier l'exactitude de ces informations.

Le contenu du présent rapport reflète l'opinion professionnelle de consultants expérimentés, spécialistes de l'environnement. Golder ne fournit pas de conseils juridiques spécifiques : il est donc recommandé de s'adresser à un juriste pour toute question d'ordre juridique.

Si les prestations ont inclus des forages et sondages ou l'interprétation de telles informations, une attention doit être portée sur le fait que des risques existent à chaque fois que de l'ingénierie et des disciplines affiliées sont mises en œuvre pour déterminer les conditions du sous-sol. Même un programme d'échantillonnage et de test précis, et mis en place selon les règles de l'art, peut échouer dans la détection de certaines conditions. Les conditions environnementales, géologiques, géotechniques, géochimiques et hydrologiques que Golder interprète entre les points d'échantillonnage peuvent différer des conditions réelles existantes. Le temps, les événements naturels et les activités sur et aux abords du site peuvent modifier les conditions découvertes.

Dans le paragraphe Conclusion du présent rapport, Golder a exposé ses conclusions principales et a fourni un résumé et une vue d'ensemble de ses conseils, opinions et recommandations. Cependant, d'autres parties du présent rapport font état des limitations sur les informations obtenues par Golder. Aussi les conseils, opinions ou recommandations exprimés dans le paragraphe Conclusion ne devraient pas être prises en compte avant d'avoir été étudiés dans le contexte du rapport pris dans son ensemble.

Résumé non technique

Afin de se conformer à la Directive IED et de sa transcription en droit français, et au vue de la publication des conclusions du BREF Grandes Installations de Combustion (BREF GIC) le 17 août 2017, Albioma le Gol (« ALG ») a mandaté Golder sarl (« Golder ») pour constituer un rapport de base sur son installation de combustion localisé 1 Route Nationale, le Gol, 97450 Saint Louis, dénommé « le site » dans la suite du présent rapport.

Visite de site

La visite du site a été réalisée le 2 mars 2018 par Maureen Herwana de Golder, accompagnée d'Audrey Hernandez, coordinatrice HSE pour Albioma le Gol.

Le site, construit en 1994, accueille deux tranches fonctionnant au charbon/bagasse et une tranche fonctionnant uniquement au charbon, des locaux de production d'électricité, des tours d'aéroréfrigérant, des installations de traitement des eaux, des bâtiments annexes et des stockages.

Quelques prélèvements de sol de surface et à faible profondeur ont été réalisés dans le cadre du dossier de la demande d'exploiter du site en 2014 et deux piézomètres sont présents à proximité du bassin d'infiltration qui récupère les eaux venant de la station d'épuration du site et qui est situé à environ 500 m au sud du site. D'après les documents disponibles, les investigations réalisées ne sont pas exhaustives au regard des traceurs définis préalablement. De ce fait, Golder recommande la réalisation d'une caractérisation de la qualité des sols dans le cadre du présent mémoire IED.

Programme d'investigations

Les investigations ont consisté en :

- La caractérisation de la qualité des sols : avec la réalisation de 12 sondages de sol à des profondeurs comprises entre 2,5 et 5 mètres de profondeur avec prélèvements et analyses en laboratoire des paramètres chimiques en lien avec l'activité du site ;
- L'installation de 2 piézomètres à 15 m de profondeur pour la caractérisation des eaux souterraines;

Résultats des investigations sur les sols

Les résultats des investigations montrent que les terrains sont constitués d'alluvions fluviaux-marine, (sable plus ou moins limoneux noirâtre à limon sableux noirâtre) avec présence de remblai en surface sur quelques points. Puis en profondeur à partir de 12 m de substrat basaltique.

Les observations sur site et les analyses en laboratoire réalisées mettent en évidence la présence d'une concentration en hydrocarbure qui dépasse la valeur de comparaison sur un point entre 0 et 1 m. Les métaux (Chrome, Nickel, Cuivre, Zinc, Arsenic et Plomb) sont quantifiés sur tous les sondages avec des concentrations qui sont généralement inférieures aux valeurs du fond géochimique local; Les HAP sont quantifiés au droit d'un sondage. Les autres paramètres (C5-C10, BTEX, Phénols et alcools) ne sont pas quantifiés.

Résultats des investigations sur les eaux souterraines

Les résultats des investigations sur les eaux souterraines sur les 3 ouvrages mettent en évidence un niveau statique qui s'établit entre 7,24 m et 11,7 m de profondeur (cote comprise entre 3,11 et 4,37 m NGR). Le sens d'écoulement général déduit des relevés est orienté vers le sud-est, ce sens d'écoulement n'est pas cohérent avec la réalité topographique de la zone.

Les analyses en laboratoire mettent en évidence l'absence de détection des paramètres alcools et hydrocarbures sur tous les piézomètres. La détection des cations et des anions (chlorures, nitrates, sulfates, nitrites, ammonium, azote ammoniacal et sodium) sur les 3 piézomètres. La détection des éléments métalliques avec du nickel, du cuivre et du mercure en Pz1;

Schéma conceptuel

Sur la base des informations disponibles, le schéma conceptuel met en évidence la présence limitée de sources de pollution dans les sols, et la présence limitée de voies de transfert sur site et hors site. Ainsi aucun enjeu significatif n'a été identifié lors de l'étude.

Table des matières

1.0	INTRO	DUCTION	10
	1.1	Contexte de l'étude	10
	1.2	Contexte normatif et méthodologique	10
	1.3	Sources d'information et rapports exploités	11
2.0	DESC	RIPTION DU SITE ET DE SON ENVIRONNEMENT ET EVALUATION DES ENJEUX	12
	2.1	Informations générales	12
	2.2	Contexte environnemental	13
	2.2.1	Voisinage du site	13
	2.2.2	Contexte géologique / hydrogéologique	14
	2.2.3	Contexte hydrologique	17
	2.2.4	Usage des eaux souterraines	17
	2.2.5	Milieux naturels potentiellement sensibles	18
	2.3	Description du site	18
	2.3.1	Description du process industriel	18
	2.3.2	Description des bâtiments, installations techniques et infrastructures	20
	2.3.3	Description des espaces extérieurs	23
	2.3.4	Situation administrative	23
	2.3.5	Identification des installations soumises au périmètre IED	23
	2.3.6	Historique des activités sur le site	24
	2.3.7	Description des accidents et incidents survenus sur le périmètre IED	24
	2.4	Identification des substances pertinents	25
	2.4.1	Contexte réglementaire	25
	2.4.2	Identification des substances et mélanges utilisés, produits ou rejetés dans le périm	
	2.5	Schéma conceptuel préliminaire	1
	2.5.1	Sources potentielles de pollution	1
	2.5.2	Vecteurs	1
	2.5.3	Cibles potentielles et voies d'exposition	1
3.0	RECH	ERCHE, COMPILATION ET EVALUATION DES DONNEES DISPONIBLES	2
	3.1	Compilation des données acquises sur le milieu sol	2

8.0	CONC	LUSIONS	33
7.0	SCHE	MA CONCEPTUEL	30
	6.3	Discussion sur les incertitudes de ces résultats.	29
	6.2.4	Synthèse	29
	6.2.3	Bilan amont-aval	29
	6.2.2	Interprétation des résultats	28
	6.2.1	Critères d'interprétation	28
	6.2	Interprétation des résultats pour les eaux souterraines	28
	6.1.2	Interprétation des résultats	
	6.1.1	Méthodologie d'interprétation	
	6.1	Interprétation des résultats pour les sols	
6.0		PRETATION DES RESULTATS ET DISCUSSION DES INCERTITUDES	
	5.6.3	Résultats analytiques pour les eaux souterraines	
	5.6.2	Observations de terrain	
	5.6.1	Méthodologie de caractérisation des eaux souterraines	
	5.6	Investigation des eaux souterraines (A210)	
	5.5.3	Résultats analytiques des sols	
	5.5.2	Observations de terrain	
	5.5.1	Méthodologie de caractérisation des sols	
	5.4	Investigation des sols (A200)	
	5.3 5.4	Programme d'investigations Gestion des déchets	
	5.2	Hygiène et sécurité	
	5.1	Planning d'intervention	
	LABO	RATOIRE	6
5.0	REALI	SATION DU PROGRAMME D'INVESTIGATIONS ET D'ANALYSES DIFFEREES	
	4.2	Investigation complémentaire sur les eaux souterraines	
	4.1	Investigation complémentaire sur les sols	
4.0		ITION DU PROGRAMME ET DES MODALITES D'INVESTIGATIONS	
	3.3	Compilation des données acquises sur les eaux superficielles	
	3.2	Compilation des données acquises sur les eaux souterraines	3

TABLEAUX

Tableau 1: Sources d'information	. 11
Tableau 2: Informations générales	. 12
Tableau 3: Voisinage du site	. 13
Tableau 4: Contexte géologique et hydrogéologique	. 14
Tableau 5: Contexte hydrologique	. 17
Tableau 6: Usage des eaux souterraines	. 17
Tableau 7: Milieux naturels sensibles	. 18
Tableau 8: Synthèse des installations	. 20
Tableau 9: Activités sur site soumises aux rubriques des Installations Classées	. 23
Tableau 10: Dates clés de l'évolution des activités du site dans le temps	. 24
Tableau 11: Liste des accidents et incidents sur le périmètre IED	. 24
Tableau 12: Regroupement de classes de dangerosité pour la santé humaine	. 26
Tableau 13 : Regroupement de classes de dangerosité pour l'environnement	. 27
Tableau 14 : Valeurs seuils vis-à-vis de la dangerosité pour l'environnement et la santé humaine	. 27
Tableau 15 : Liste des substances pertinentes d'après le premier critère	. 28
Tableau 16 : Liste des substances pertinentes d'après le second critère	. 29
Tableau 17 : Zones à investiguer et paramètres associés	5
Tableau 18: Planning d'intervention	6
Tableau 19: Programme d'investigations	8
Tableau 20: Synthèse des formations rencontrées	. 10
Tableau 21: Résultats analytiques – Sols (sur site)	. 11
Tableau 22: Résultats analytiques – Prélèvements hors site – valeur de référence locale	. 13
Tableau 23: Données du fond géochimique des sols de l'ile de la Réunion (mg/kg)	. 13
Tableau 24: Mesures et caractéristiques techniques des piézomètres – relevé synchrone 01/06/2018	
Tableau 25: Résultats d'analyse sur les sols	. 22
Tableau 26: Schéma conceptuel du site	. 30
FIGURES	
Figure 1: Plan de localisation du site (source : IGN)	. 12
Figure 2 : Plan de localisation du site sur plan cadastral (source : cadastre.gouv.fr)	. 13
Figure 3 : Vue aérienne des alentours du site (source : Google Earth)	. 14
Figure 4: Carte géologique du site (source : Dossier de demande d'exploiter au titre des ICI SOGREAH, juin 2004)	
Figure 5 : Points d'eau situés à proximité du site (source : Infoterre)	. 18

Figure 6 : Procédé sur site (source : présentation du site, octobre 2017)	20
Figure 8: Périmètre IED du site (source : plan du site)	24
Figure 9: Localisation des sondages de surface et des prélèvements des eaux souterrair Dossier de demande d'autorisation d'exploiter au titre des ICPE, SOGREAH, juin	
Figure 10: Localisation des piézomètres hors site (source : document du site)	4
Figure 11: Carte de qualité des résultats sur les sols (sur site)	14
Figure 11: Carte de qualité des résultats sur les sols (hors site)	15
Figure 12: Carte des niveaux statiques (sur site et hors site)	20
Figure 14: Schéma conceptuel	32

ANNEXES

APPENDIX A

Reportage photo

APPENDIX B

Photographies aériennes

APPENDIX C

Liste des Produits Utilisés sur Site

APPENDIX D

Coupes Lithologiques

APPENDIX E

Fiches de prélèvements – sols de surface

APPENDIX F

Fiches de prélèvements – Eaux souterraines

APPENDIX G

Résultats analytiques

APPENDIX H

Contrôle qualité des résultats

1.0 INTRODUCTION

1.1 Contexte de l'étude

La Directive européenne IED (« Industrial Emissions Directive ») n° 2010/75/UE du 24 novembre 2010 définit au niveau européen une approche intégrée de la prévention et de la réduction des pollutions émises par les installations industrielles et agricoles entrant dans son champ d'application.

Elle a été transposée en droit français par l'ordonnance n° 2012-7 du 5 janvier 2012 pour la partie législative, et par divers textes comme le décret n° 2013-374 du 2 mai 2013 et les articles L515-28 à L515-31 et R515-58 à R515-84 pour la partie réglementaire.

Les textes de mai 2013 transposent le chapitre II de la Directive IED concernant les activités visées dans son annexe I, à savoir les activités soumises auparavant à la directive relative à la prévention et à la réduction intégrée de la pollution (IPPC), ainsi que les activités manipulant des substances dangereuses tels que définis à l'article 3 du règlement dit CLP (« Classification, Labelling, Packaging »).

Afin de permettre une meilleure identification des installations visées, le décret n° 2013-375 a créé 40 nouvelles rubriques dans la nomenclature des Installations Classées pour la Protection de l'Environnement (ICPE), établie à l'article R511-9 du Code de l'Environnement. L'ensemble des activités énumérées dans l'annexe I de la Directive est ainsi classée dans les rubriques « 3000 ».

Les installations de combustion d'Albioma entre dans le champ de la nouvelle directive IED. La rubrique concernée est la **rubrique 3110 : Installation de combustion**.

Les articles R515-59 et R515-71 du Code de l'Environnement indiquent l'obligation de prévoir un rapport de base au sein du dossier de demande d'autorisation ou du dossier de réexamen, lorsque l'activité implique l'utilisation, la production ou le rejet de substances ou de mélanges dangereux pertinents mentionnés à l'article 3 du règlement (CE) n° 1272/2008 du 16 décembre 2008 relatif à la classification, à l'étiquetage et à l'emballage des substances et des mélanges, et un risque de contamination du sol et des eaux souterraines sur le site de l'exploitation. En cas d'un dossier de réexamen, l'exploitant doit adresser au préfet les informations nécessaires dans les douze mois qui suivent la date de publication des décisions concernant les conclusions sur les meilleures techniques disponibles.

Afin de se conformer à la Directive IED et de sa transcription en droit français, et au vue de la publication des conclusions du BREF Grandes Installations de Combustion (BREF GIC) le 17 août 2017, Albioma le Gol (« le Client » ou « ALG ») a mandaté Golder sarl (« Golder ») pour constituer un rapport de base sur son installation de combustion localisé 1 Route Nationale, Le Gol, 97450 Saint Louis, dénommé « le site » dans la suite du présent rapport.

La visite du site a été réalisée le 2 mars 2018 par Maureen Herwana, Ingénieur environnement de Golder, accompagnée d'Audrey Hernandez, Coordinatrice HSE pour Albioma le Gol.

1.2 Contexte normatif et méthodologique

Cette mission se réfère aux prescriptions et normes suivantes :

- Le guide méthodologique pour l'élaboration du rapport de base prévue par la Directive IED, version 2.2 du Ministère en charge de l'Environnement ;
- La Note du 19 avril 2017 du Ministère en charge de l'Environnement ;
- Méthodologie nationale de gestion des sites et sols pollués version 1 d'avril 2017 du Ministère en charge de l'Environnement;

■ La norme NF X 31-620-2 (juin 2011), concernant les prestations de services relatives aux sites et sols pollués (étude, ingénierie, réhabilitation de sites pollués et travaux de dépollution) et plus particulièrement les prestations élémentaires suivantes :

- A100 (visite du site);
- A110 (études historiques, documentaires et mémorielles);
- A120 (études de vulnérabilité des milieux) ;
- A200 (prélèvements, mesures, observations et/ou analyses sur les sols);
- A210 (prélèvements, mesures, observations et/ou analyses sur les eaux souterraines).

1.3 Sources d'information et rapports exploités

Les différentes sources d'information utilisées dans le cadre de cette étude sont les suivantes :

Tableau 1: Sources d'information

Sources	Références		
Site Géoportail	www.geoportail.fr		
Site Cadastre	www.cadastre.gouv.fr		
Carte géologique et notice descriptive ainsi que les points d'eau et sondages fournis par la base de données Infoterre du BRGM	http://infoterre.brgm.fr		
Base de données relative aux installations classées	http://www.installationsclassees.developpement-durable.gouv.fr/		
Site GéoRisque pour les informations sur les risques naturels et technologiques	www.georisques.gouv.fr		
Photographies aériennes	Photographies aériennes de 1949, 1978, 1997, 2003, 2011		
Documents du site	 Etude d'impact – Centrale bagasse/charbon du Gol – 1992; Etude d'impact – Centrale du Bois Rouge B – SOGREAH, Juin 2004; Rapport de campagne de reconnaissance de sol – 2005; Tableau d'inventaire des rubriques ICPE – avril 2016; Résultats d'analyse de charbons – CEMR, 2016-2018; Résultats d'analyse de scories volantes – CEMR, 2016-2018; Résultats d'analyse de scories charbon – CEMR, 2016-2018; Fiches de données de sécurité des produits chimiques; Plan des réseaux du site; Plan de masse; Présentation du site; Liste des produits chimiques. 		

2.0 DESCRIPTION DU SITE ET DE SON ENVIRONNEMENT ET EVALUATION DES ENJEUX

2.1 Informations générales

Les photographies de l'état actuel du site sont présentées en APPENDIX A (rapport photographique de la visite de site réalisée par Golder le 2 mars 2018).

Tableau 2: Informations générales

Informations	Détails
Localisation	Le site est situé sur la commune de Saint Louis, sur la partie sud-ouest de l'île de la Réunion. Voir le plan de localisation du site en Figure 1.
Cadastre	Section DH parcelles n° 501, 555, 559, 560, 872, 875, 876, 877, 879, 882, 883, 884, 885, 886, 887, 888, 889, 890, 892. Voir le plan cadastral du site en Figure 2
Altitude et topographie	Le site a une altitude d'environ 15,5 m NGR et est relativement plat.
Coordonnées dans le système de projection RGR92	X = 333 691 Y = 7 646 028

Figure 1: Plan de localisation du site (source : IGN)

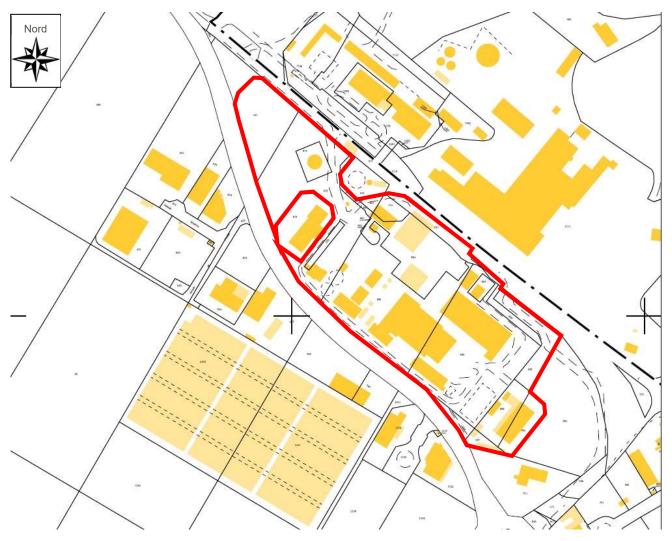


Figure 2 : Plan de localisation du site sur plan cadastral (source : cadastre.gouv.fr)

En rouge : l'emprise du site

2.2 Contexte environnemental

2.2.1 Voisinage du site

Le voisinage du site est caractérisé par la présence des usages suivants :

Tableau 3: Voisinage du site

Direction	Usages
Nord	La sucrerie du Gol, le chai de maturation du Gol
Est	Activités commerciales et industrielles (station-service, concessionnaire automobile)
Sud	La Route Nationale RN1 et des zones industrielles
Ouest	Des champs de canne à sucre

Figure 3 : Vue aérienne des alentours du site (source : Google Earth)

En rouge : l'emprise du site

2.2.2 Contexte géologique / hydrogéologique

Le contexte géologique et hydrogéologique est présenté dans le Tableau 4.

Tableau 4: Contexte géologique et hydrogéologique

Informations	Détails	
Contexte géologique régional	L'île de la Réunion constitue la partie émergée d'un strato-volcan qui repose sur le plancher océanique. Deux cônes basaltiques jumelés de structure complexe constituent l'ossature principale de l'île (le Piton des Neiges et le Piton de la Fournaise).	
	Sur le pourtour de l'île, les rivières principales et secondaires donnent naissance à des pleines alluviales et des cônes d'épandage constitués par des alluvions charriées et déposées par les cours d'eau ou en périodes cycloniques.	
Contexte géologique local	La zone d'étude se situe en limite des formations volcaniques du massif du Piton des Neiges au nord et des formations superficielles appartenant à l'ancien cône de déjection de la Rivière Saint-Etienne au sud-ouest et aux formations fluvio-marines au sud-est (voir Figure 4).	
	Le site repose pour l'essentiel sur un substrat basaltique (CP_{IV2}). Seule la pointe nordest du site correspond aux alluvions fluvio-marines (MF_1).	

Informations	Détails	
	D'après la coupe géologique des sondages géotechniques réalisés au droit du site (BSS002PJQV, BSS002PJQW, BSS002PJQT, BSS002PJRA, BSS002PJQZ), les formations géologiques présentes au droit du site sont les suivantes :	
	■ De 0 à 10 m environ (fin de sondage) : tuf gris sablo-graveleux ;	
	Présence de limon rouge et galets entre 9 et 10 m de profondeur sur certains sondages.	
	D'après le guide BRGM sur les aquifères et eaux souterraines en France, les aquifères présents dans la région sont les suivants :	
Contexte hydrogéologique	Aquifères volcaniques : dans le domaine littoral, les formations volcaniques, saturées en eau douce, en équilibre avec l'eau de mer, constituent ce qu'on appelle la « nappe de base. Celle-ci est reconnue et exploitée par des puits et forages sur le pourtour du massif du Piton des Neiges et sur celui du Piton de la Fournaise. Les niveaux piézométriques sont couramment compris entre 0,5 et 4 m;	
régional	Aquifère détritiques : la continuité de l'aquifère basaltique est interrompue au niveau des plaines littorales, alluviales ou marines, relativement développées à la périphérie du massif du Piton des Neiges ;	
	Aquifères fluvio-marins : de nature un peu particulière car comblées par des sédiments en partie marins sont les plaines littorales de Saint-Paul, du Gol, de Saint-Gilles-l'Hermitage sur la côte ouest de l'île.	
Contexte	Les terrains basaltiques présents dans le sous-sol de la région comprise entre Etang Sale-les-Bains et St Pierre sont très perméables et constituent un excellent aquifère. Cet aquifère est alimenté par l'infiltration des précipitations tombant sur les planèzes basaltiques qui bordent la plaine côtière et par les pertes des ravines et rivières. Les prélèvements par pompage, dans les puits ou forages, et l'écoulement en mer sont les seuls exutoires de la nappe.	
hydrogéologique local et au droit du site	Les sondages géotechniques réalisés au droit du site ont montré l'absence de nappe jusqu'à 10 m de profondeur. Un piézomètre répertorié dans la base de données Infoterre à moins de 100 m au nord du site (BSS002PJPK) a montré un niveau d'eau à d'environ 13 m. de profondeur.	
	Deux piézomètres installés à proximité du bassin d'infiltration du site et à environ 500 m au sud (voir 3.2) montrent un niveau d'eau entre 7 et 8 m de profondeur.	

La nappe au droit du site se trouve à priori à plus de 10 m de profondeur. Cependant, au vue de la formation géologique en surface (tuf sablo-graveleux), la nappe au droit du site peut être considéré comme vulnérable vis-à-vis des impacts potentiels venant du site.

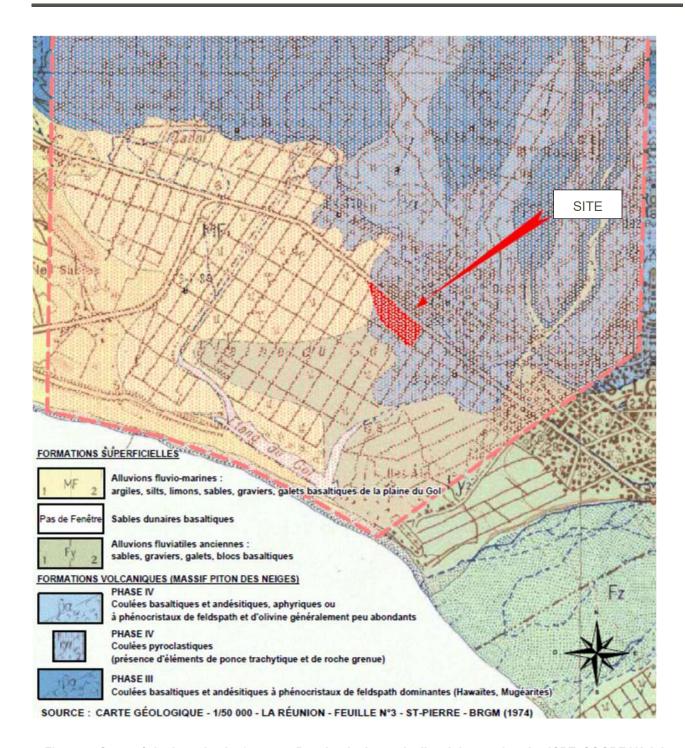


Figure 4: Carte géologique du site (source : Dossier de demande d'exploiter au titre des ICPE, SOGREAH, juin 2004)

2.2.3 Contexte hydrologique

Des cours d'eau plus ou moins pérennes sont présents autour du site, et sont présentés dans le Tableau 5.

Tableau 5: Contexte hydrologique

	Distance au site et sens d'écoulement	Vulnérabilité
Cours d'eau 1	Ravine Papaye, ravine Maniron et ravine des Cafres entre 500 et 1 200 m à l'ouest qui s'écoulent vers le sud	
Cours d'eau 2	Ravine du Gol à 650 m au sud-est qui s'écoule vers le sud	Usage potentiellement agricole, domestique, industriel

De plus, l'Océan Indien est situé à environ 1,5 km au sud du site.

Les cours d'eau situés autour du site sont potentiellement utilisés pour des usages agricoles, domestiques et industriels. Au vue de leur localisation et distance par rapport au site, la ravine du Gol peut être considéré comme vulnérable vis-à-vis d'un impact potentiel venant du site.

2.2.4 Usage des eaux souterraines

Les usages des eaux souterraines ont été compilés à partir des ouvrages recensés dans la base de données BSS Infoterre dans un rayon de 500 m autour du site et des données disponibles du site et sont présentés dans le Tableau 6 et Figure 5.

Tableau 6: Usage des eaux souterraines

Informations	Détails
Eau industrielle	Deux ouvrages ont été recensés dans un rayon de 500 m pour un usage industriel. Ils sont localisés à environ 500 m au sud, en aval hydraulique supposé du site. Ces ouvrages captent la nappe des alluvions anciennes.
Piézomètre	Six ouvrages ont été recensés dans un rayon de 500 m pour un usage de contrôle dont quatre dans un rayon de 500 m en aval hydraulique supposé du site (appartenant au site et utilisés pour mesurer l'impact du bassin d'infiltration du site). Ces ouvrages captent les eaux des alluvions. Les points d'eau figurés au droit du site dans la Figure 5 correspondent aux sondages géotechniques (voir 3.1).
Captage agricole	Aucun captage agricole n'est répertorié dans un rayon de 500 m autour du site.
Captage AEP	Aucun captage AEP n'est situé à proximité du site. Dans le secteur de la Plaine du Gol, seul un forage exploite l'aquifère. Il s'agit du forage Marengo (BSS002PJNV) qui alimente une partie de la commune de l'Etang Salé et qui est situé à environ 3 km au nord-ouest du site.

Les eaux souterraines au droit du site peuvent être considérées comme vulnérables en raison de l'absence d'une formation non perméable en surface. Cependant, aucun usage sensible n'est répertorié à proximité du site.

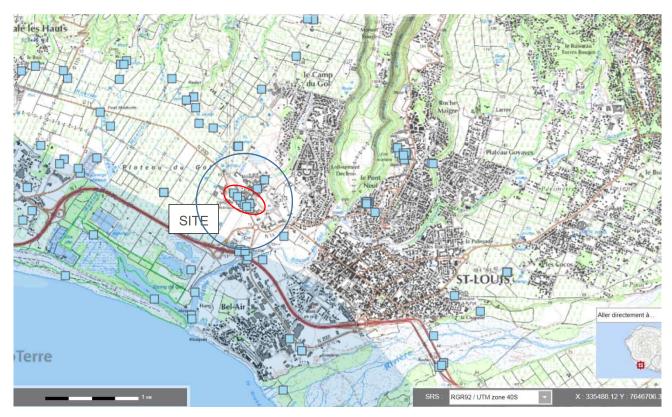


Figure 5 : Points d'eau situés à proximité du site (source : Infoterre)

En bleu : rayon de 500 m. En rouge : l'emprise du site

2.2.5 Milieux naturels potentiellement sensibles

D'après la base de données Infoterre, des milieux naturels sensibles et/ou protégés sont présents dans l'environnement du site :

Tableau 7: Milieux naturels sensibles

Туре	Distance	Nom
ZNIEFF type 1	550 m au sud-est	Embouchure de la rivière Saint Etienne

Au vue de leur distance par rapport au site, ces milieux naturels peuvent être considérés comme peu vulnérables.

2.3 Description du site

2.3.1 Description du process industriel

Les unités de combustion présentes sur site sont destinées à alimenter le réseau d'Electricité de France (EDF) de l'Ile de la Réunion, et à fournir de la vapeur à la sucrerie du Gol.

Les tranches 1 et 2 (ALG A) fonctionnent avec du charbon et de la bagasse, résidu de la canne à sucre, en campagne sucrière et avec du charbon seulement en dehors de la campagne sucrière. La tranche 3 (ALG B), quant à elle, fonctionne avec du charbon seulement. La tranche 3 est également alimentée par du fuel domestique pour le démarrage des bruleurs.

Les charbons sont livrés par des camions et sont entreposés dans des silos ou dans des zones de stockage de sécurité, situées à l'extérieur au nord-ouest du site. Les bagasses sont livrées directement depuis la sucrerie via un transporteur à bande.

Le charbon (et/ou la bagasse) est brulé dans les chaudières pour réchauffer de l'eau puis générer de la vapeur qui elle-même est admise en turbine. Les turbines sont situées dans les salles de machines. La rotation de la turbine entraîne l'alternateur, qui convertit l'énergie mécanique en énergie électrique. Un transformateur relève le niveau de tension à la sortie de l'alternateur pour alimenter le réseau EDF.

La vapeur venant de la turbine est ensuite refroidie via le réseau d'eau des tours aéro-réfrigérantes pour être par la suite réinjectée dans le circuit pour une nouvelle utilisation dans un cycle thermodynamique.

Les résidus de charbon (scories) sont gérés de manière suivante :

- Les scories venant de l'installation ALG A sont stockés dans une zone dédiée à l'extérieur au nord-ouest du site et sont mélangées avec les cendres volantes captées dans les cheminées. Ce mélange est laissé pour maturation pendant 48h avant d'être envoyé dans une installation de stockage des déchets inertes ;
- Les scories venant de l'installation ALG B sont stockées dans une zone dédiée situé au sud-est du site avant d'être envoyées dans une installation de stockage des déchets non dangereux.

Les cheminées des chaudières sont équipées par un électrofiltre. Les cendres récupérées sont :

- utilisées comme engrais dans les champs voisins pour les cendres venant de la combustion de la bagasse;
- mélangées avec les scories et envoyées dans une installation de stockage des déchets inertes pour les cendres venant de la combustion du charbon de l'installation ALG A;
- mélangées avec les scories et envoyées dans une installation de stockage des déchets non dangereux pour les es cendres volantes venant de la combustion du charbon de l'installation ALG B.

Les fumées sont filtrées et traitées pour diminuer la teneur en SOx par du lait de chaux avant d'être rejetée dans l'atmosphère. Le lait de chaux est stocké dans des big bags avant d'être mélangé dans une cuve dédiée. Ce traitement génère du sulfate de calcium (gypse) qui est stocké dans une zone dédiée située au nord-est du site et par la suite envoyé à la cimenterie pour réutilisation.

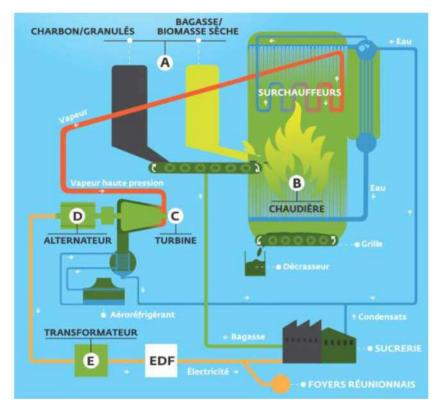


Figure 6 : Procédé sur site (source : présentation du site, octobre 2017)

2.3.2 Description des bâtiments, installations techniques et infrastructures

Les installations présentes sur site sont synthétisées en Tableau 8.

Tableau 8: Synthèse des installations

Installation ALG A (tranche 1 et 2)		ALG B (tranche 3)		
Année de création	1995	2006		
Fonctionnement	Mixte charbon/bagasse en campagne sucrière Charbon en inter-campagne	Charbon		
Puissance nette mode charbon	29 + 30 MW net	51,8 MW net		
Puissance nette mode bagasse	27 + 28 MW net	-		
Infrastructures	 deux installations de combustion Une salle de machines comprenant deux turbines de combustion Deux silos de stockage de charbon avec une capacité unitaire de 1 500 t Un local de stockage de bagasse 	 une installation de combustion Une salle de machines comprenant une turbine de combustion un silo de stockage de charbon avec une capacité de 1 500 t et un stockage de sécurité de charbon brut de capacité de 15 000 t deux tours d'aéroréfrigérant 		

Installation	ALG A (tranche 1 et 2)		ALG B (tranche 3)	
		Quatre tours d'aéroréfrigérant		Un local de traitement des eaux
		Un local de traitement des eaux		Une zone de stockage des scories et
	•	Une zone de stockage des scories et cendres volantes		cendres volantes

Figure 7: Plan de localisation des bâtiments et des espaces extérieurs du site (source : plan du site)

2.3.3 Description des espaces extérieurs

Les espaces extérieurs sont de plusieurs natures, comme suit :

- Des voiries et parking en bitume ;
- Quelques espaces verts enherbés.

2.3.4 Situation administrative

Le site fait l'objet de l'Arrêté Préfectoral n° 2014-5198/SG/DRCCV du 8 décembre 2014 pour l'exploitation du site.

Le site est soumis aux rubriques des Installations Classées suivantes :

Tableau 9: Activités sur site soumises aux rubriques des Installations Classées

Rubriques	Activités	Capacités	Régimes ¹
3110.A	Combustion de combustibles	388 MWth	А
2910.A.1	Installation de combustion consommant du charbon	369 MWth	А
2910.B.1	Installation de combustion consommant un mélange de biomasse et de charbon	388 MWth	А
4801 (anciennement 1520.1)	Dépôt de houille	19 500 t	А
2515.1.a	Concassage, broyage et criblage et opérations analogues de produits naturels	668 kW	А
2921.a	Installations de refroidissement par dispersion d'eau dans un flux d'air	225 800 kW	E
Silos et stockage de produits organiques dégageant des poussières inflammables		12 000 m ³	DC

¹ A: Autorisation

E: Enregistrement

DC : Déclaration avec contrôle périodique

2.3.5 Identification des installations soumises au périmètre IED

Conformément à l'article R515-58 du code de l'environnement, le périmètre géographique devant faire l'objet du rapport de base, appelée dans le reste du document « périmètre IED », correspond à l'ensemble des zones géographiques du site accueillant les installations suivantes, ainsi que leur périmètre d'influence en matière de pollution des sols et des eaux souterraines :

- Les installations relevant des rubriques 3000 de la nomenclature ICPE :
- Les installations ou équipements s'y rapportant directement, exploités sur le même site, liés techniquement à ces installations et susceptibles d'avoir des incidences sur les émissions et la pollution.

Les rubriques ICPE concernées par la Directive IED au sein du site ALG sont les suivantes :

Rubrique 3110 : Combustion de combustibles dans des installations d'une puissance thermique nominale totale égale ou supérieure à 50 MW.

Le périmètre IED du site est présenté dans la figure ci dessous.

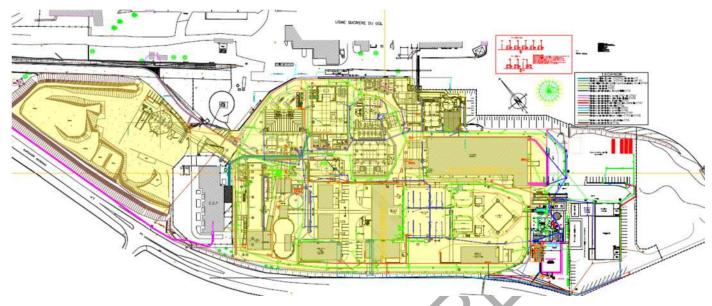


Figure 8: Périmètre IED du site (source : plan du site)

En jaune : périmètre IED du site

2.3.6 Historique des activités sur le site

Le site commence ses activités en 1994 au nom de la Compagnie Thermique du Gol (CTG). A partir de 2013, les installations s'appellent désormais Albioma le Gol A (ALGA) et Albioma le Gol B (ALGB). Le tableau cidessous présente les dates clés de l'évolution des activités du site.

Tableau 10: Dates clés de l'évolution des activités du site dans le temps

Date	Exploitant – installations
Avant 1994	Le site est anciennement utilisé comme champ de cannes. D'après les photos aériennes anciennes, la sucrerie du Gol est déjà présente avant 1949.
1994	Début de l'exploitation du site par la Compagnie Thermique du Gol (CTG). La centrale thermique (CTG 1) avait une capacité de 64 MW.
2006	Début de l'exploitation de la deuxième tranche (CTG 2) avec une capacité de 163 MW.
2006	Installation des cuves de fuel domestique
2014	Installation de la station d'épuration du site

2.3.7 Description des accidents et incidents survenus sur le périmètre IED

D'après les informations obtenues auprès des représentants du site, les accidents et incidents environnementaux qui sont survenus sur le périmètre IED sont présentés dans le tableau ci-dessous :

Tableau 11: Liste des accidents et incidents sur le périmètre IED

Date	Description
29/06/2012	Fuite de fuel par le tuyau flexible usé

Date	Description
23/06/2015	Fuite de fuel depuis un bac de préparation chiffon pour allumage chaudière 2
09/03/2017	Débordement de la cuve de stockage de fuel
25/02/2018	Déversement du fuel domestique à la station d'épuration (STEP)

2.4 Identification des substances pertinents

2.4.1 Contexte réglementaire

Le 3° du paragraphe I de l'article R515-59 du Code de l'Environnement définit les deux conditions qui, lorsqu'elles sont réunies, conduisent à l'obligation pour l'exploitant de soumettre un rapport de base. Un rapport de base est dû lorsque l'activité implique :

■ Critère n° 1 – Utilisation, production ou rejet de substances ou mélange dangereux pertinents

Les substances ou mélanges dangereux visés par ce premier critère sont les substances ou mélanges définis à l'article 3 du règlement (CE) n° 1272/2008 du 16 décembre 2008 relatif à la classification, à l'étiquetage et l'emballage des substances et des mélanges (dit « règlement CLP »). Il s'agit des substances ou mélanges classés dans un moins une des classes de danger définies à l'annexe l'du « règlement CLP » car elles satisfont aux critères relatifs aux dangers physiques, aux dangers pour la santé ou aux dangers pour l'environnement énoncés dans la même annexe.

Les substances et mélanges dangereux sont considérés comme « pertinents » et à prendre en compte dans l'élaboration du rapport de base :

- S'ils sont actuellement utilisés, produits ou rejetés par l'installation IED;
- Ou si la demande d'autorisation d'exploiter déposée prévoit leurs utilisations, productions ou rejets futurs par l'installation IED.

Critère n° 2 – Risque de contamination du sol et des eaux souterraines

Le risque de contamination du sol et des eaux souterraines sera estimé au regard de la dangerosité de la substance ou du mélange pertinent et des classes de dangers associées, et de ses caractéristiques physiques au regard de sa capacité à impacter les sols, les eaux souterraines et l'état général des milieux et de l'environnement.

Deux règles permettent de caractériser une substance dangereuse comme susceptible de générer un risque de contamination du sol et des eaux souterraines. Les substances retenues à l'étape précédente doivent être évaluées au regard des règles suivantes :

- Critère d'exclusion : les substances gazeuses à température ambiante, et ne s'altérant pas en solide ou liquide lors de leur relargage accidentel ou chronique, ainsi que les substances solides non solubles dans l'eau et non pulvérulentes ne sont pas considérées comme susceptibles de générer un risque de contamination du sol et des eaux souterraines, et n'impliquent donc pas à elles seules l'élaboration d'un rapport de base;
- Critère d'inclusion : toute substance définie comme prioritaire dans le domaine de l'eau et/ou faisant l'objet de normes de qualité environnementale (NQE) au titre de la réglementation issue de la Directive

Cadre sur l'Eau¹, est considérée comme susceptible de représenter un risque de contamination du sol et des eaux souterraines et génère l'obligation d'élaborer un rapport de base.

Les tableaux ci-dessous présentent le regroupement des classes de dangerosité pour la santé humaine et l'environnement et les flux massiques annuels maximum de substances ou mélanges dangereux, utilisés, produits ou rejetés sur le site à partir desquels un rapport de base est requis, proposés au groupe de travail par le BRGM et l'INERIS.

Tableau 12: Regroupement de classes de dangerosité pour la santé humaine

Groupe de dangerosité pour la santé	Classes de danger correspondantes
S3	H300 : Mortel en cas d'ingestion
	H310 : Mortel par contact cutané
	H330 : Mortel par inhalation
	H340 : Peut induire des anomalies génétiques
	H341 : Susceptible d'induire des anomalies génétiques
	H350 : Peut provoquer le cancer
	H351 : Susceptible de provoquer le cancer
	H360 : Peut nuire à la fertilité ou au fœtus
	H361 : Susceptible de nuire à la fertilité ou au fœtus
	H362 : Peut être nocif pour les bébés nourris au lait maternel
	H370 : Risque avéré d'effets graves pour les organes
	H372 : Risque avéré d'effets graves pour les organes à la suite d'expositions
	répétées ou d'une exposition prolongée
S2	H301 : Toxique en cas d'ingestion
	H304 : Peut être mortel en cas d'ingestion et de pénétration dans les voies
	respiratoires
	H311 : Toxique par contact cutané
	H314 : Provoque des brûlures à la peau et des lésions oculaires graves
	H318 : Provoque des lésions oculaires graves
	H331 : Toxique par inhalation
	H334 : Peut provoquer des symptômes allergiques ou d'asthme ou des difficultés
	respiratoires par inhalation
	H371 : Risque présumé d'effets graves pour les organes
	H373 : Risque présumé d'effets graves pour les organes à la suite d'expositions
	répétées ou d'une exposition prolongée
S1	H302 : Nocif en cas d'ingestion
	H312 : Nocif par contact cutané
	H315 : Provoque une irritation cutanée
	H317 : Peut provoquer une allergie cutanée
	H319 : Provoque une sévère irritation des yeux
	H332 : Nocif par inhalation

¹ Directive 2006/118/CE du parlement européen et du conseil du 12 décembre 2006 sur la protection des eaux souterraines contre la pollution et la détérioration et Directive 2008/105/CE du parlement européen et du conseil du 16 décembre 2008 établissant des normes de qualité environnementale dans le domaine de l'eau, modifiant et abrogeant les directives du Conseil 82/176/CEE, 83/513/CEE, 84/491/CEE, 86/280/CEE et modifiant la directive 2000/60/CEE

26/80

Groupe de dangerosité pour la santé	Classes de danger correspondantes
	H335 : Peut irriter les voies respiratoires H336 : Peut provoquer somnolence ou des vertiges

Tableau 13 : Regroupement de classes de dangerosité pour l'environnement

Groupe de dangerosité pour l'environnement	Classes de danger correspondantes
E3	H400 : Très toxique pour les organismes aquatiques H410 : Très toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme
E2	H411 : Toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme H412 : Nocif pour les organismes aquatiques, entraîne des effets néfastes à long terme
E1	H413 : Peut être nocif à long terme pour les organismes aquatiques

Tableau 14 : Valeurs seuils vis-à-vis de la dangerosité pour l'environnement et la santé humaine

Groupe de dangerosité	Seuil maximal de quantité de substance/mélange, en dessous duquel l'activité n'est pas redevable d'un rapport de base		
S/E3	F3 = 10 kg/an		
S/E2	F2 = 100 kg/an		
S/E1	F1 = 1000 kg/an		

2.4.2 Identification des substances et mélanges utilisés, produits ou rejetés dans le périmètre IED

Les produits dangereux présents sur le site peuvent être classés en cinq catégories :

- Les produits utilisés ou générés par les installations de combustion et utilisés pour l'entretien des installations de combustion ;
- Les produits utilisés pour le traitement des eaux ;
- Les produits du laboratoire ;
- Les huiles et produits servant à l'entretien des équipements mécaniques et
- les carburants utilisés par les engins de manutention.

Seuls les produits pertinents du procédé de l'installation IED sont à considérer. Ainsi, les produits utilisés ou générés par les installations de combustion et utilisés pour l'entretien des installations de combustion et les produits utilisés pour le traitement des eaux sont considérés comme pertinents au titre du rapport de base.

La liste de l'ensemble des substances et mélanges utilisés, produits ou rejetés sur l'ensemble du site est disponible en APPENDIX C.

Compte tenu des critères présentés ci-dessus, les substances retenues d'après le premier critère (substances ou mélanges dangereux pertinents) sont les suivantes :

Tableau 15 : Liste des substances pertinentes d'après le premier critère

Lieu d'utilisation	Substance	Phrases de risques	Classe de dangerosité retenue	Consommation annuelle (kg/an)	Seuil de quantité retenu
Traitement des	Bifluorure de sodium	H301, H314	S2	560	>100 kg/an
eaux	Soude caustique	H314, H290	S2	120 000	>100 kg/an
	Acide acétique 9%	H226, H314	S2	6 000	>100 kg/an
	Morpholine	H314, H311, H332, H302, H226	S2	600	>100 kg/an
	Eau de javel (hypochlorite de sodium)	H290, H314, H318, H335, H400	S2	150 000	>100 kg/an
	Acide sulfurique	H314	S2	70 000	>100 kg/an
	Nalco 3DT487 (5-10% acide phosphorique)	H319	S1	13 000	>1 000 kg/an
	Eliminox (5-10% carbohydrazide)	H317	S1	2 300	>1 000 kg/an
	Nalco 72215 (5-10% hydroxide de sodium)	H314, H318	S2	3 060	>100 kg/an
	Nalco 72216 (sulfite de potassium)	H315, H319, H335	S1	1 400	>1 000 kg/an
	Nalco 1826 (25-30% diéthyléthanolamine)	H314, H335)	S2	500	>100 kg/an
	Nalco 71307 (10-30% distillats légers)	H319	S1	1 900	>1 000 kg/an
	Nalco 3DT227C (10-30% acide chlorhydrique, 5-10% chlorure de zinc	H314, H335, H411	S2	780	<100 kg/an
Chaudières	Gasoil non routier	H226, H304, H332, H315, H351, H373, H411	S2, E2	50 700	<100 kg/an
	Charbon	H350	S3	Non connu (>1 000)	>10 kg/an
	Cendres volantes et scories	H350	S3	Non connu (>1 000)	>10 kg/an

La vérification du second critère (risque de contamination du sol et des eaux souterraines) de ces substances est présentée dans le tableau suivant.

Tableau 16 : Liste des substances pertinentes d'après le second critère

Lieu d'utilisation	Substance	Mode et condition de stockage	Retenu/non retenu	Justification
Traitement des eaux	 Bifluorure d'ammonium Soude caustique - hydroxyde de sodium 	Ces substances sont solides. Le bifluorure d'ammonium est utilisé en petite quantité (moins de 1 000 kg/an) Aucun accident/incident environnemental n'a été répertorié sur ces produits	Non retenu	Substance solide retenue car soluble dans l'eau et est utilisée en grande quantité sur site.
Traitement des eaux	 Acide acétique 9% Acide sulfurique Nalco 3DT487 (5-10% acide phosphorique) 	Les acides sont stockés dans des cuves aériennes et dans des containers de 1 m³ posés sur un système de rétention et sur des sols en béton. Aucun accident/incident environnemental n'a été répertorié sur l'acide acétique.	Non retenu	Une fois rejetée dans les milieux (sol ou nappe), les conséquences d'une contamination par des acides sont très limitées et ne peuvent être associés principalement qu'à la modification du pH et du potentiel RedOx.
Traitement des eaux	 Morpholine Eau de javel Nalco 72215 (5-10% hydroxyde de sodium) Nalco 77216 (sulfite de potassium) Nalco 1826 (25-30% diéthyléthanolamine) Nalco 71307 (10-30% distillats légers) Nalco 3DT227C (10-30% acide chlorhydrique, 5-10% chlorure de zinc) 	Ces produits sont stockés soit dans des cuves aériennes soit dans des containers de 1 m³ posés sur un système de rétention et sur des sols en béton. Aucun accident/incident environnemental n'a été répertorié sur ce produit.	Retenu	

Lieu d'utilisation	Substance	Mode et condition de stockage	Retenu/non retenu	Justification
Traitement des eaux	Eliminox (5-10% carbohydrazide)	Ce produit est stocké dans des containers de 1 m³ posés sur un système de rétention. Aucun accident/incident environnemental n'a été répertorié sur ce produit.	Non retenu	Aucun traceur n'est disponible d'après le laboratoire pour rechercher cette substance dans le sol ou la nappe. De plus, d'après la fiche de données de sécurité du produit, il n'est pas supposé présenter un danger ou une toxicité chronique pour les organismes aquatiques.
Chaudières	/ Fuel domestique	Le fuel domestique est stocké dans deux cuves : une cuve aérienne de double enveloppe de 60 m³ équipée d'une détection de fuite et une cuve semienterrée de double enveloppe de 50 m³ équipée d'une alarme trop plein.	Retenu	
		Des fuites et débordement de la cuve du fuel ont eu lieu sur site (cf. Tableau 11).		
Chaudières	Charbon	Le charbon est stocké dans trois silos de capacité unitaire de 1 500 t. En dehors de charbon stocké dans les trois silos dédiés, des charbons sont également stockés à l'extérieur au nord-ouest du site. Le sol de la zone de stockage n'est pas couvert d'un revêtement.	Retenu	Le charbon est solide mais pulvérulent.
Chaudières	Cendres volantes et scories	Les installations de combustion génèrent des résidus de combustion (scories) et des cendres récupérées les filtres à poussières. Les scories et cendres volantes venant de l'installation ALGA sont stockées à l'extérieur au nord-ouest du site. Le sol de la zone de stockage n'est pas couvert d'un revêtement.	Retenu	Le mélange de scories et cendres volantes est solide mais pulvérulent.

2.5 Schéma conceptuel préliminaire

L'ensemble des données collectées dans l'étude historique et de vulnérabilité permettent d'initier le schéma conceptuel préliminaire du site qui décrit les sources potentielles de pollution, les vecteurs associés à chaque source et les cibles.

L'ensemble des éléments constitutifs du schéma conceptuels sont présentés dans les trois paragraphes suivants.

2.5.1 Sources potentielles de pollution

Sources potentielles de pollution sur site :

Les sources potentielles de pollution identifiées sur site sont les suivantes :

- Zones de stockage de charbon, cendres volantes et scories : présence de stockage de charbon, cendres volantes et scories sur des sols non revêtus et/ou non couverts par un toit ;
- Zones de stockage des produits pétroliers (cuves de fuel domestiques, stockage des huiles): présence de deux cuves de stockage de fuel domestique et occurrence signalées par le passé de fuites et débordement sur ces cuves;
- Zone de stockage des produits de traitement des eaux : présence de produits de traitement des eaux en grandes quantités.

2.5.2 Vecteurs

Les différents vecteurs pouvant transférer une pollution des sols du site vers des cibles potentielles identifiés lors de cette étude sont les suivants :

- Sur site :
 - o Remontées de vapeurs depuis les sols potentiellement pollués ;
 - Contact direct et inhalation des poussières depuis les sols potentiellement pollués ;
 - Transfert des contaminants par la nappe superficielle.
- Hors site :
 - o Transfert des contaminations par la nappe superficielle ;
 - o Envol des poussières depuis le site.

2.5.3 Cibles potentielles et voies d'exposition

Les cibles identifiées dans cette étude qui peuvent être potentiellement exposée à des pollutions issues du site sont les suivantes :

- Sur sites :
 - o Les travailleurs du site;
- Hors site :
 - o Les activités agricoles (champs de canne à sucre à proximité du site) ;
 - o La ravine du Gol et son usage potentiel agricole, domestique et industriel.

3.0 RECHERCHE, COMPILATION ET EVALUATION DES DONNEES DISPONIBLES

3.1 Compilation des données acquises sur le milieu sol

Une étude géotechnique des sols a été réalisée lors de la phase d'étude du projet initial de la construction de la centrale thermique en décembre 1992 et avril 2004.

Dans le cadre du dossier de la demande d'autorisation d'exploiter du site (SOGREAH, juin 2004), quatre prélèvements de sol en surface (de 0 à 10 cm) et à faible profondeur (de 40 à 50 cm) ont été réalisés au droit du site. Les résultats ont montré :

- La présence des hydrocarbures totaux à l'état de trace sur l'ensemble des échantillons (teneur maximale de 100 mg/kg);
- L'absence ou la présence à l'état de trace des HAP sur les échantillons analysés (teneurs maximales des HAP totaux de 0,96 mg/kg);
- La présence des métaux suivants :
 - Arsenic (As), Cadmium (Cd), Chrome (Cr), Chrome VI, Mercure (Hg), Plomb (Pb), Sélénium (Se): absence de détection de ces paramètres ou présence des concentrations qui restent inférieures aux fonds géochimiques;
 - Nickel: présence des concentrations qui restent inférieures aux sols présentant des anomalies naturelles modérées;
 - Zinc : présence des concentrations qui restent inférieures aux sols présentant des anomalies naturelles modérées ;
 - Des teneurs significatives en zinc (jusqu'à 790 mg/kg) ont été observées au droit du sondage S4 en surface (entre 0 et 10 cm), situé en limite aval à environ 430 m au nord-ouest.

La localisation des points de sondage est présentée dans la Figure 9.

Figure 9: Localisation des sondages de surface et des prélèvements des eaux souterraines (source : Dossier de demande d'autorisation d'exploiter au titre des ICPE, SOGREAH, juin 2004)

3.2 Compilation des données acquises sur les eaux souterraines

D'après les informations obtenues auprès du représentant du site, aucun diagnostic des eaux souterraines n'a été réalisé au droit du site.

Deux piézomètres ont été installés (date et compagnie non communiquée) à proximité du bassin d'infiltration qui récupère les eaux venant de la station d'épuration du site et qui est situé à environ 500 m au sud du site. D'après le représentant du site, un suivi trimestriel est réalisé au droit de ces piézomètres. La localisation de ces piézomètres est présentée dans la Figure 10.

Figure 10: Localisation des piézomètres hors site (source : document du site)

Les résultats des dernières campagnes de suivi réalisées en août 2017 ont montré la présence des teneurs significatives en chlorures et sulfates, sur les piézomètres en amont et aval du bassin.

Dans le cadre du dossier de la demande d'autorisation d'exploiter du site (SOGREAH, juin 2004), quatre prélèvements ponctuels des eaux souterraines ont été réalisés au droit des piézomètres ou puits existants à proximité du site. Les résultats ont montré :

- Des niveaux statiques entre 1,95 et 13,59 m de profondeur sous la surface ;
- La présence des teneurs en hydrocarbures totaux à l'état de trace sur le piézomètre latéral et les piézomètres aval du site ;
- L'absence de quantification en hydrocarbures aromatiques polycycliques (HAP) sur les piézomètres analysés;
- La présence des teneurs en métaux pouvant correspondre à des concentrations naturelles.

La localisation des prélèvements des eaux souterraines est présentée dans la Figure 9.

3.3 Compilation des données acquises sur les eaux superficielles

D'après les informations obtenues auprès du représentant du site, aucun diagnostic des eaux superficielles n'a été réalisé au droit du site.

4.0 DEFINITION DU PROGRAMME ET DES MODALITES D'INVESTIGATIONS

4.1 Investigation complémentaire sur les sols

D'après les documents disponibles, aucune investigation détaillée sur la qualité des sols n'est disponible au droit du site. Dans le cadre de la demande d'autorisation d'exploiter réalisée par SOGREAH en 2004, seuls quatre échantillons de sol de surface ont été prélevés. De ce fait, Golder recommande la réalisation d'une caractérisation de la qualité des sols dans le cadre du présent mémoire IED.

Les zones à investiguer ainsi que les paramètres retenus pour la caractérisation sont les suivants :

Tableau 17 : Zones à investiguer et paramètres associés

Zone	Justification	Nombre de sondage	Profondeur (m)	Analyses
Zones de stockage de charbon, cendres volantes et scories	Présence de stockage de charbon, cendres volantes et scories dans des zones non couvertes d'un revêtement.	6	3	Pack des 8 métaux Sulfates HAP Indice phénol
Zones de stockage des produits pétroliers (cuves de fuel domestique, stockage des huiles)	Présence de deux cuves de stockage de fuel domestique. Des fuites et débordement ont eu lieu sur les cuves.	2	5	HCT C5-C40 BTEX
Zone de stockage des produits de traitement des eaux	Présence de produits de traitement des eaux en grandes quantités.	6	5	HCT C5-C40 Pack des 8 métaux Sodium pH Sulfites Alcools

4.2 Investigation complémentaire sur les eaux souterraines

D'après les informations disponibles, la nappe au droit du site serait présente entre 7 et 13 m de profondeur. Aucune information n'est disponible sur la qualité des eaux souterraines au droit du site. Golder recommande donc la réalisation d'une caractérisation de la qualité des eaux souterraines dans le cadre du présent mémoire IED, par le biais de 2 piézomètres à 15 m de profondeur (un en amont et un en aval) et l'échantillonnage d'un piézomètre existant du site (PzA), situé à environ 500 m au sud du site et en amont du bassin d'infiltration du site. Les paramètres retenus sont les suivants :

- Hydrocarbures totaux C5-C40;
- Pack des 8 métaux ;
- Pack des produits de traitement des eaux : sodium, pH, sulfites, alcools, NH4, azote Kjeldahl, anions (chlorures, nitrates, sulfates, nitrites).

5.0 REALISATION DU PROGRAMME D'INVESTIGATIONS ET D'ANALYSES DIFFEREES AU LABORATOIRE

5.1 Planning d'intervention

Les investigations se sont déroulées entre le 28/05/2018 et 01/06/2018 selon l'échéancier suivant :

Tableau 18: Planning d'intervention

Date	Tâches effectuées
28/05/2018	Signature du plan de prévention, visite du site et implantation des points, forage du piézomètre Pz1
29/05/2018	Fin du forage et équipement du piézomètre Pz1, réalisation des sondages S02, S01 et S09
30/05/2018	Réalisation des sondages S05, S04, S12 et S03, forage du piézomètre Pz2, réalisation des prélèvements de surface hors site PS1 et PS2
31/05/2018	Fin du forage et équipement du piézomètre Pz2, réalisation des sondages S11 et S10, prélèvement des eaux souterraines des piézomètres PzA et Pz1
01/06/2018	Réalisation des sondages S06, S07 et S08, géo-référencement par un géomètre, réalisation de la piézométrie synchrone, prélèvement du piézomètre Pz2, rebouchage des piézomètres Pz1 et Pz2

5.2 Hygiène et sécurité

Une analyse des risques spécifiques à l'intervention a été établie par Golder préalablement au commencement des investigations de terrain. Ce document, transmis le 16/05/2018 et mis à jour après commentaires le 24/05/2018 à Mme Hernandez (responsable QHSE), il regroupe notamment les informations suivantes :

- L'identification des différents intervenants ;
- La description des activités de terrain envisagées et des risques associés ;
- La liste des consignes de sécurité à appliquer sur le site ;
- Les mesures à prendre en cas d'accident.

L'implantation des ouvrages sur site a été effectuée après :

- La réalisation d'une DICT (Déclaration d'Intention de Commencement de Travaux) ;
- L'analyse des plans des réseaux.

Un plan de prévention a été préparé par Mme Hernandez afin de prendre en compte les risques, contraintes et les exigences en matière de sécurité du site Albioma Le Gol. Il a été signé par toutes les parties intervenantes le 28/05/2018.

Au cours de la réalisation des investigations de terrain au droit de Pz2, le dernier tubage a été cassé dans le forage lors de sa remontée. Ainsi, une section de 1,5 m de tube métallique est restée au fond du forage vers -14 m de profondeur.

5.3 Programme d'investigations

Objectif et stratégie d'investigations

L'objectif des investigations proposées est de caractériser les sols et les eaux souterraines au droit du site et à proximité des installations et des sources potentielles de contamination.

Programme analytique

Le programme analytique a été défini sur la base des activités qui ont été identifiées sur le site lors de la visite de l'étude historique et environnementale, et sur la base des substances pertinentes identifiées au 2.4.2. Les paramètres analysés dépendent de la source potentielle de la pollution ciblée et des indices de contaminations observés lors des prélèvements.

Le laboratoire Wessling, laboratoire accrédité par le Cofrac a été retenu pour réaliser le programme analytique de ces investigations. Pour chacun des milieux investigués, les méthodes d'analyse utilisées ainsi que les limites de détection du laboratoire correspondantes sont détaillées dans les rapports d'analyse fournis en APPENDIX G.

Programme réalisé

Le programme réalisé est présenté dans le tableau suivant. La stratégie d'investigations a été adaptée aux contraintes de terrain (présence de réseaux, nature des sols) et les conditions d'accessibilité ont été prises en compte lors de l'implantation.

Tableau 19: Programme d'investigations

Milieu	Nombre	Profondeur	Programme analytique	Justification	Dénomination sur la Figure 11	Ecart par rapport à la proposition initiale
Sols superficiels	2 prélèvements	0-0,3	Pack 8 métaux	Connaissance du fond géochimique local	PS1 et PS2	n/a
Sol	12 sondages	3 à 5 m	Pack des 8 métaux, Sulfates, Indice phénol, Sodium, pH, Sulfites, Alcools, HCT C5-C40 BTEX HAP,	Stockage de charbon, cendres volantes, scories dans des zones non couvertes d'un revêtement, cuves de stockage de fuel domestique, de produits de traitement des eaux.	S01 a S12	n/a
Eaux souterraines	1 piézomètre historique 2 nouveaux piézomètres	15,58 m de	Hydrocarbures totaux C5-C40; Pack des 8 métaux; Pack des produits de traitement des eaux: sodium, pH, sulfites, alcools, NH4, azote Kjeldahl, anions (chlorures, nitrates, sulfates, nitrites).		PzA (piézomètre hors site existant) Pz1 et Pz2	Piézomètres Pz1 et Pz2 rebouchés à l'issus des prélèvements

5.4 Gestion des déchets

Les déchets générés lors de ces investigations sont de trois types :

Sols potentiellement souillés : ces sols proviennent des activités de forage et sont principalement liés à la réalisation des sondages et piézomètres. Ces sols ont été réutilisés pour combler les sondages. Les sols ne présentant pas d'indices de contamination en surplus ont été étalés sur les espaces verts ;

- Eaux potentiellement souillées : ces eaux sont issues des activités de développement des piézomètres nouvellement installés et des activités d'échantillonnages des piézomètres. Elles ont été rejetées dans le réseau de collecte des eaux pluviales du site puis traitées. Les eaux de purge issues du prélèvement de PzA ont été rejetées dans les broussailles à proximité;
- Matériaux potentiellement souillés : ces matériaux sont tous les matériaux ayant pu entrer en contact avec des contaminants (les gants de prélèvement en nitrile, les gaines et tubages d'échantillonnage, etc.). Ils ont été éliminés dans les poubelles pour déchets (DIB) présentes sur site.

5.5 Investigation des sols (A200)

5.5.1 Méthodologie de caractérisation des sols

Sondages

Les opérations de sondage ont été réalisées par la société Ginger CEBTP. Toutes ces étapes ont été supervisées par un ingénieur de terrain Golder. Les sondages ont été réalisés avec des équipements adaptés aux contraintes d'accès et à la nature des terrains rencontrés. Les sondages ont ainsi été réalisés à l'aide d'une foreuse équipée d'une tarière de diamètre 66 mm. Cette méthode de forage permet de :

- Définir les caractéristiques lithologiques des terrains ;
- Faire, au besoin, des observations visuelles et organoleptiques ;
- Prélever des échantillons de sol aux profondeurs désirées.

■ Prélèvements des échantillons de sol

La démarche générale suivante a été mise en œuvre pour la réalisation de chaque prélèvement de sols (norme NF ISO 10381-2 - Qualité du sol - Échantillonnage - Partie 2):

- Découpe des revêtements de surface (dalle béton ou enrobé);
- Forage par tronçon de 1,0 m jusqu'à la profondeur définie ou réactualisée en fonction des indices organoleptiques ou mesures PID. Réalisation de relevés de terrain : coupe géologique des terrains rencontrés, observations organoleptiques, mesure des gaz volatils du sol au moyen d'un détecteur de gaz volatils (PID);
- Échantillonnage des sols : un échantillon est systématiquement collecté sur la base de la lithologie des formations, des éventuelles variations de faciès, et/ou en cas de présence d'indices d'impact (suivant les observations organoleptiques et les résultats des mesures de terrain);
- Sélection des échantillons destinés à être analysés en laboratoire en fonction des mesures de terrain et des observations organoleptiques (couleur, odeur...), selon :
 - Les indices de contamination les plus importants ;
 - La nature géologique et la compréhension globale de la problématique du site

 Conditionnement des échantillons dans des flaconnages adaptés (2 pots en verres bruns) pour les analyses envisagées. Chaque échantillon est conservé au frais et transporté en glacière munie d'éléments réfrigérants;

- Rebouchage des sondages à l'aide des sols extraits et d'une éventuelle cimentation selon la localisation;
- Les coordonnées x, y et z (système RGR92) renseignées sur les logs de terrain ont été relevées par un géomètre.

A l'issue de chaque sondage, le matériel de prélèvement entrant en contact avec les sols est systématiquement nettoyé à l'aide d'une brosse métallique pour éviter tout risque de contamination croisée.

Les sondages entrepris ont été réalisés à des profondeurs entre 3 et 5 m selon les points (un refus à 2,5 m).

Les coupes des sondages incluant la description des terrains prélevés sont jointes en APPENDIX D.

5.5.2 Observations de terrain

Description des sols rencontrés

Les relevés de terrain permettent de préciser les caractéristiques des sols au droit du site. Les principaux faciès rencontrés lors des sondages sont globalement identiques sur les différents points et conforme avec ce qui était attendu suite aux données collectées lors de l'étude historique et documentaire.

Ils sont synthétisés dans le tableau suivant (du haut vers le bas) :

Tableau 20: Synthèse des formations rencontrées

Profondeur (m)	Épaisseur moyenne (m)	Formation	Faciès	Commentaires
0 – 15	Environ 10 m	Alluvions fluviaux- marine	Sable plus ou moins limoneux noirâtre à limon sableux noirâtre	·
12	Supérieure à 3 m	Substrat basaltique	Blocs de basalte	Formation rencontrée sur le piézomètre Pz1

Observations organoleptiques et mesures de terrain

Aucun indice organoleptique (odeur, couleur, aspect ou valeur PID) n'a été identifié lors des investigations de terrain

5.5.3 Résultats analytiques des sols

Les résultats des analyses en laboratoire sont synthétisés dans le Tableau 21 et les certificats d'analyse du laboratoire sont joints en APPENDIX G. La Figure 11 présente la synthèse des principaux résultats sur les sols.

Contrôle qualité

Les prélèvements de sol ont fait l'objet d'un contrôle qualité au moyen de 3 doublons qui ont été réalisés au droit des sondages S04, S08 et S12 Les résultats d'analyse entre un échantillon et son doublon sont présentés en APPENDIX H, ils montrent un écart acceptable (<30%). Les prélèvements réalisés sont donc conformes.

Tableau 21: Résultats analytiques – Sols (sur site)

Paramètres	Unité	Valeur de comparaison	S01(0-1)	S01(2-3)	S02(0-1)	S02(1-2)	S03(0-1)	S03(2-3)	S04(0-1)	S04(1-2)	S04(1-2)	S05(0-1)	S05(2-3)	S06(0-1)	S06(2-3)
Phénol															
Phénol (indice)	mg/kg MS		<0,5	<0,51	<0,52	<0,48	<0,46	<0,51	<0,56	<0,5	<0,47	<0,51	<0,49	<0,48	<0,48
Eléments															
Sulfates (SO4) calc.	mg/kg MS-A		630	630	280	330	81	66	250	120	110	60	39	170	110
Métaux lourds															
Chrome (Cr)	mg/kg MS	811 (c) / 275 (d)	60	73	32	31	26	22	40	27	28	59	38	42	29
Nickel (Ni)	mg/kg MS	356 (c) / 225 (d)	140	120	87	88	81	70	160	80	82	280	150	180	93
Cuivre (Cu)	mg/kg MS	112 (c) / 82 (d)	36	37	30	33	26	20	37	22	22	47	30	62	27
Zinc (Zn)	mg/kg MS	356 (c) / 135 (d)	110	140	100	110	85	85	83	81	82	80	62	83	83
Arsenic (As)	mg/kg MS	34 (c) / 3 (d)	2	2	<2,0	2	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
Cadmium (Cd)	mg/kg MS	0,4 (c) / 0,5 (d)	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Mercure (Hg)	mg/kg MS	0,29 (c) / 0,1 (d)	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Plomb (Pb)	mg/kg MS	17 (c) / 18 (d)	10	<10	<10	16	<10	<10	<10	<10	<10	<10	<10	11	<10
HAP															
Naphtalène	mg/kg MS		<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Acénaphtylène	mg/kg MS		<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Acénaphtène	mg/kg MS		<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Fluorène	mg/kg MS		<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Phénanthrène	mg/kg MS		0,069	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Anthracène	mg/kg MS		<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Fluoranthène	mg/kg MS		0,27	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Pyrène	mg/kg MS		0,21	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Benzo(a)anthracène	mg/kg MS		0,13	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Chrysène	mg/kg MS		0,13	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Benzo(b)fluoranthène	mg/kg MS		0,2	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Benzo(k)fluoranthène	mg/kg MS		0,081	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Benzo(a)pyrène	mg/kg MS		0,1	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Dibenzo(ah)anthracène	mg/kg MS		<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Indéno(123-cd)pyrène	mg/kg MS		0,093	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Benzo(ghi)pérylène	mg/kg MS		0,081	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,05	<0,05
Somme des HAP	mg/kg MS	50 (a)	1,4	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-

Légende	
-/-	Paramètre non détécté
n/a	Non applicable
<xx< td=""><td>Valeur inférieure à la limite de quantification du laboratoire</td></xx<>	Valeur inférieure à la limite de quantification du laboratoire
xx	Si absence de valeur de comparaison, valeur supérieure à la limite de quantification du laboratoire Pour les métaux, valeur inférieure aux valeurs de référence locales du BRGM et moyenne hors site
xx	Si valeur de comparaison existante, valeur supérieure à la limite de quantification du laboratoire et inférieure à la valeur de comparaison Pour les métaux, valeur supérieure à une des valeurs de référence locales du BRGM et moyenne hors site
xx	Si valeur de comparaison existante, valeur supérieure à la valeur de comparaison Pour les métaux, valeur supérieure aux valeurs de référence locales du BRGM et moyenne hors site
[a] Valeurs de co	omparaison correspondant à l'arrêté du 12 décembre 2014
[b] Valeurs guide	pour l'admission des terres polluées en stockage (chartre FNADE)
[c] Critère corres	spondant au fond géochimique de l'Ile de la Réunion défini par l'étude du BRGM (2008)
[d] Concentration	ns dans les échantillons hors site - valeur de référence locales

Processor Proc	Paramètres	Unité	Valeur de comparaison	S07(0-1)	S07(4-5)	S08(0-1)	S08(0-1)	S08(2-3)	S09(1-2)	S09(4-5)	S10(0-1)	S10(4-5)	S11(0-1)	S11(2-3)	S12(1-2)	S12(2-3)	S12(2-3)
Some as GS	Paramètres globaux / Indices																
Some short of major 16 10 110 110 110 110 110 110 110 110 1	Somme des C5	mg/kg MS		<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5
Series and Comment of Comment o	Somme des C6	mg/kg MS		<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5
Sementaric Communic	Somme des C7	mg/kg MS		<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5
Series And Cife	Somme des C8	mg/kg MS		<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5
Mate processor (E.C. II) might Mate 100	Somme des C9	mg/kg MS		<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5
Index Index plane (SICAR)	Somme des C10	mg/kg MS		<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5
Propose Prop	Indice hydrocarbure (C5-C10)	mg/kg MS		<10,0	<10,0	<10,0		<10,0	<10,0	<10,0	<10,0	<10,0	<10,0	<10,0	<10,0	<10,0	<10,0
Productioner > COLOTIS might Mig	Indice hydrocarbure C10-C40	mg/kg MS	500 (a)	320	32	<20	<20	<20	<20	<20	1400	<20	<20	<20	<20	<20	<20
Productions of CFSC21																	
Management of CFLDS Migh SES Migh SES	•												-				
Processor of CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-C	, , , , , , , , , , , , , , , , , , , ,										<100		-				
Security Control Con	Hydrocarbures > C21-C35	mg/kg MS		170	<20	<20		<20	<20	<20	700	<20	<20	<20	<20	<20	<20
Solution No. No. Solution No. No.	-	mg/kg MS		140	<20	<20	<20	<20	<20	<20	650	<20	<20	<20	<20	<20	<20
Manuscharish morphysics 11 (1) (275) 10 10 10 10 10 10 10 1																	
Commer (Cr) maply NS aft (p.17 of t) a		mg/kg MS							1800	2800	3400	2700	2600	3400	2400	2900	
Note (N)																	
Camer (Cis) megly Ref 172 (c) 128 (c)																	
			. , , ,														
America (a)																	
Cadrium (Cg)												-					
Mercare (19)			. , , ,														
Part													-				
CAM- DETEX																	
Banzahe		mg/kg MS	17 (c) / 18 (d)						11	<10	<10	<10	<10	<10	<10	<10	<10
Table Majk																	
Ellyberachine			0,5 (b)														
mp.p.yklme																	
Oxylene Migh MS Coll C																	
Somme des Sylènes																	
Sermer des BTEX	-																
Cumber myfig MS	·																
m, pEtploblère mgkg MS del do,1 do,1 do,1 do,1 do,1 do,1 do,1 do,1																	
Mestlykine																	
o-Ethylotubre							- 7	- 7									
Peedscounten					-												
Somme des CAV	-				-												
Cations, anions et éléments nom métalliques Figure			6 (-)														
Suffix (SQ3) Mg/f EL		Hig/kg ivio	0 (a)	-/-	-/-	-/-	-/-	-/-									
Alcool Methanol mg/kg MS									z1000	z4000	z1000	z1000	z4000	z4000	z1000	*1000	z1000
Méthanol mg/kg MS mg/kg MS c20		µg/I E/L							<1000	< 1000	<1000	< 1000	<1000	<1000	<1000	<1000	<1000
Éthanol mg/kg MS 42,0		ma/ka MC							~20	<20	<200	~20	<20	~20	~20	-20	-20
2-Propanol mg/kg MS																	
tert-Butanol mg/kg MS C2,0																	-
n-Propanol mg/kg MS													_				
2-Méthyl-1-propanal (isobutanol) mg/kg MS																	
1-Butanol mg/kg MS																	
2-(3)-Pentanol mg/kg MS																	
3-Hexanol mg/kg MS																	
1-Hexanol mg/kg MS	. ,								7.	7.1		7.1	7.1	7.1	7.	7.	7.1
4-Heptanol mg/kg MS															-		
1-Heptanol mg/kg MS <2,0															-		
1-Octanol mg/kg MS															-		
2-Butanol mg/kg MS	· · · · · · · · · · · · · · · · · · ·																
2-Ethyl-1-hexanol mg/kg MS															-		
		mg/kg MS							-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	

Tableau 22: Résultats analytiques – Prélèvements hors site – valeur de référence locale

Paramètres	Unité	Valeur de comparaison	PS1	PS2
Métaux lourds				
Chrome (Cr)	mg/kg MS	811 (c) / 275 (d)	180	370
Nickel (Ni)	mg/kg MS	356 (c) / 225 (d)	160	290
Cuivre (Cu)	mg/kg MS	112 (c) / 82 (d)	69	96
Zinc (Zn)	mg/kg MS	356 (c) / 135 (d)	150	120
Arsenic (As)	mg/kg MS	34 (c) / 3 (d)	3	3
Cadmium (Cd)	mg/kg MS	0,4 (c) / 0,5 (d)	<0,5	<0,5
Mercure (Hg)	mg/kg MS	0,29 (c) / 0,1 (d)	<0,1	<0,1
Plomb (Pb)	mg/kg MS	17 (c) / 18 (d)	27	<10

Légende								
-/-	Paramètre non détécté							
n/a	Non applicable							
<xx< td=""><td>Valeur inférieure à la limite de quantification du laboratoire</td></xx<>	Valeur inférieure à la limite de quantification du laboratoire							
xx	Si absence de valeur de comparaison, valeur supérieure à la limite de quantification du laboratoire Pour les métaux, valeur inférieure aux valeurs de référence locales du BRGM et moyenne hors site							
xx	Si valeur de comparaison existante, valeur supérieure à la limite de quantification du laboratoire et inférieure à la valeur de comparaison Pour les métaux, valeur supérieure à une des valeurs de référence locales du BRGM et moyenne hors site							
xx	Si valeur de comparaison existante, valeur supérieure à la valeur de comparaison Pour les métaux, valeur supérieure aux valeurs de référence locales du BRGM et moyenne hors site							
[a] Valeurs de co	mparaison correspondant à l'arrêté du 12 décembre 2014							
[b] Valeurs guide	[b] Valeurs guide pour l'admission des terres polluées en stockage (chartre FNADE)							
[c] Critère corres	[c] Critère correspondant au fond géochimique de l'Ile de la Réunion défini par l'étude du BRGM (2008)							
[d] Concentration	s dans les échantillons hors site - valeur de référence locales							

Tableau 23: Données du fond géochimique des sols de l'ile de la Réunion (mg/kg)

Elément	As	Cd	Cr	Cu	Ni	Zn	Pb	Hg
Min	< LQ	< LQ	30	< LQ	< LQ	26	< LQ	< LQ
1 ^{er} quartile	24	0,3	241	45	89	119	10	0,08
Médiane	28	0,4	571	76	182	151	14	0,17
Moyenne	30	0,4	557	81	224	153	16	0,23
3 ^{ème} quartile	34	0,4	811	112	356	190	17	0,29
Max	54	0,8	1468	206	642	309	51	1,46

Source : Rapport BRGM/RP 56576-FR – Cartographie des teneurs des Eléments Traces Métalliques (ETM) sur l'ensemble de l'ile de la réunion (novembre 2008)

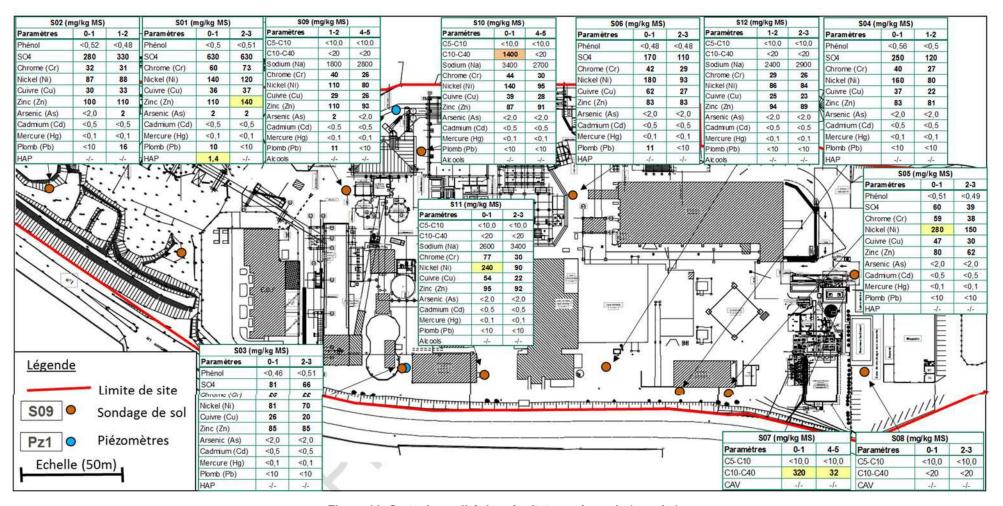


Figure 11: Carte de qualité des résultats sur les sols (sur site)

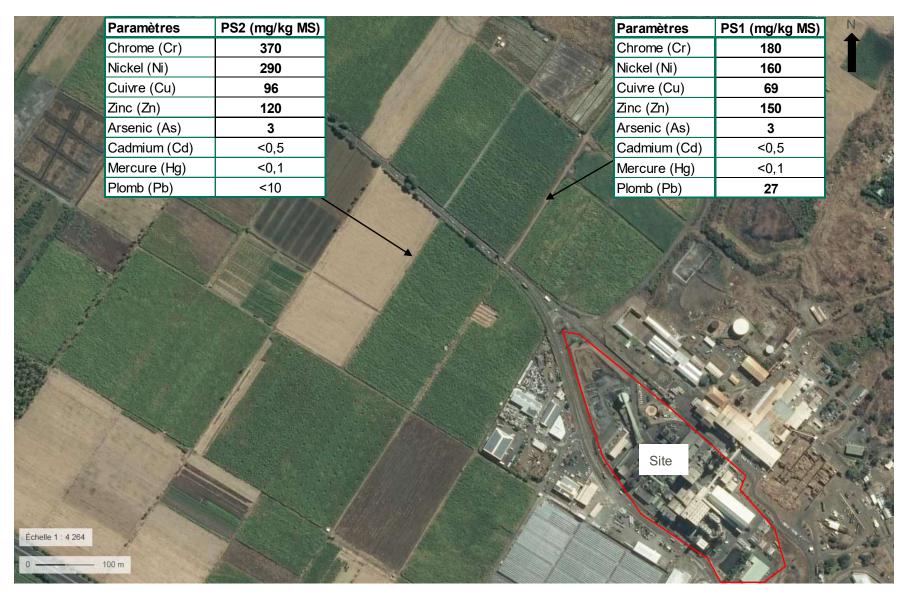


Figure 12: Carte de résultat des sols hors site (valeurs de référence locale)

5.6 Investigation des eaux souterraines (A210)

5.6.1 Méthodologie de caractérisation des eaux souterraines

Installation des piézomètres

Les opérations de forage des piézomètres ont été réalisées par la société Ginger CEBTP sous la supervision d'un ingénieur de terrain Golder.

Le forage des piézomètres a été réalisé à une profondeur de 15 et 15,4 m, à l'aide d'une foreuse équipée d'un tricône de diamètre 90 mm.

Les piézomètres ont été installés conformément aux prescriptions de la norme AFNOR FD X31 - 614 – Méthode de détection et de caractérisation des pollutions - Réalisation d'un forage de contrôle de la qualité de l'eau souterraine au droit d'un site potentiellement pollué.

Les ouvrages ont été équipés de la façon suivante :

- Tubage PEHD de diamètre 55/60 mm ;
- Le tubage crépiné selon les conditions hydrogéologiques rencontrées : plein jusqu'à 9 m et crépine jusqu'au fond de l'ouvrage ;
- Massif filtrant en gravier siliceux autour et au-dessus de la partie crépinée ;
- Bouchon étanche (bentonite) de 1 m d'épaisseur afin d'isoler la partie crépinée des éventuelles infiltrations superficielles;
- Aucun capot de protection / cimentation en surface n'ont été réalisé car les ouvrages n'étaient pas destinés à être conservé.
- Après réalisation, chaque ouvrage a fait l'objet d'un développement jusqu'à l'obtention d'une eau claire.

Les coupes techniques et lithologiques des ouvrages installés sont présentées en APPENDIX D et la synthèse des caractéristiques de l'ensemble des ouvrages est rappelée dans le Tableau 24.

Les 2 piézomètres qui ont été installés Pz1 et Pz2 ont été rebouchés juste après avoir été prélevés. Ils ont été rebouchés selon les règles de l'art avec du gravier dans la partie crépinée entre -15 m et -9 m, de la bentonite entre -9 m et -1 m et du béton ensuite.

Nivellement des ouvrages

Le nivèlement des ouvrages a été réalisé par un géomètre expert le 01/06/2018 à la fin des investigations. Les coordonnées X, Y et Z des points sont renseignées sur les coupes géologiques de terrain en APPENDIX D.

■ Prélèvements des échantillons d'eaux souterraines

Les prélèvements d'eau souterraine ont été réalisés conformément à la norme AFNOR FDX 31-615 (voir fiches de prélèvement des eaux souterraines en APPENDIX F:

- Mesure à l'aide d'une sonde piézométrique à interface du niveau statique de la nappe et de la présence éventuelle d'une phase libre, et de son épaisseur, le cas échéant. Ces mesures de niveaux ont été effectuées sur l'ensemble des piézomètres préalablement aux prélèvements afin d'obtenir une mesure synchrone;
- Mesure des paramètres physico-chimiques : température, conductivité, pH, potentiel d'oxydoréduction, oxygène dissous ;
- Purge de chaque ouvrage à l'aide d'une pompe immergée 12V jusqu'au renouvellement d'au moins trois fois le volume de l'ouvrage ou jusqu'à la stabilisation des paramètres physico-chimiques. Lors de

la purge, la pompe est positionnée à environ 50 cm du fond de l'ouvrage puis remontée progressivement ;

- Prélèvement des échantillons d'eau destinés au laboratoire à l'aide d'un échantillonneur en polypropylène chimiquement inerte à usage unique et mesure des paramètres physico-chimiques des eaux de prélèvements;
- Conditionnement des échantillons dans des flacons adaptés aux analyses prévues, stockage au frais et transport en glacière équipée d'éléments réfrigérants jusqu'au laboratoire. Le délai de 48 h n'a pas été assuré compte tenu de l'éloignement entre le site d'investigation et le laboratoire.

Les eaux de purge ont été renvoyées sur les chaussées du site, collectées puis traitées.

Entre chaque prélèvement, le matériel (pompe et appareils de mesure) a été nettoyé et les tuyaux de purge changés systématiquement.

Les prélèvements ont été effectués sur deux jours, le 31/05/2018 de l'amont vers l'aval (Pz1 puis PzA), et le 01/06/2018, Pz2. Au final, les puits ont été prélevés dans l'ordre suivant : Pz1, PzA puis Pz2.

Contrôle qualité

Les éléments relatifs aux analyses de contrôle qualité, blanc de transport sont présentés en APPENDIX H.

Blanc de transport :

Un contrôle qualité a été réalisé par l'envoi et l'analyse d'un blanc de transport, lors de l'envoi de tous les échantillons au laboratoire d'analyse. Ce contrôle est réalisé afin de vérifier l'absence de contamination croisée au cours du transport.

Les résultats d'analyse sur le blanc de transport montrent l'absence de quantification de l'ensemble des composés analysés (excepté l'ammonium, l'azote ammoniacal et le sodium détecté à l'état de traces). Il y a donc absence de dégazage et de contamination croisée lors du transport des échantillons.

Doublon :

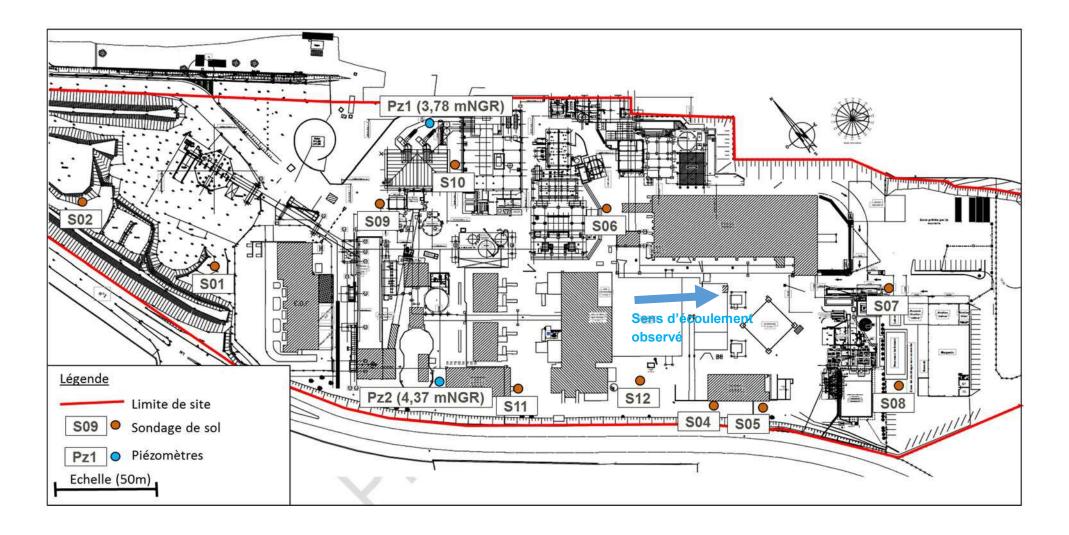
Les contrôles qualité indiquent que les échantillons réalisés et les résultats associés sont conformes et exploitables.

Les prélèvements d'eau souterraine ont fait l'objet d'un contrôle qualité au moyen d'un doublon qui a été réalisé au droit de l'ouvrage Pz2. Les résultats d'analyse (présentés en APPENDIX H) montrent un écart acceptable (<30% sur les différents paramètres). Les analyses réalisées sont donc conformes.

5.6.2 Observations de terrain

Niveaux statiques

Le Tableau 24 résume les mesures de piézométrie réalisées lors de la campagne de 01/06/2018.


Tableau 24: Mesures et caractéristiques techniques des piézomètres – relevé synchrone du 01/06/2018

Ouvrage	Repère	Elévation du repère	Prof.	Ø	Crépin	ie	Position hydrauli que / site	Epais- seur de flottant	Niveau d'eau / repère	Niveau d'eau corrigé
		m NGR/ relatif	m	mm	Haut (m)	Bas (m)		m	m/ repère	m NGR/ relatif
Pz1 (sur site)	PVC	15,48	15,58	51	9	15	Amont	n/a	11,7	3,78
Pz2 (sur site)	PVC	14,77	15,4	51	9,4	15, 4	Aval	n/a	10,4	4,37
PzA Hors site	PVC	12,94	10,35	65	-/-	-/-	Aval latéral	n/a	7,24	3,11

Les relevés piézométriques ont mis en évidence :

- Un niveau statique compris entre 3,11 mNGR et 4,37 mNGR;
- L'absence de phase flottante observée ;
- Le sens d'écoulement général déduit des relevés des niveaux statiques est orienté vers le sud-est, ce sens d'écoulement n'est pas cohérent avec la réalité topographique de la zone d'étude.
- Deux phénomènes peuvent expliquer ces données :
 - Présence d'une nappe non homogène, les arrivées d'eau recoupées par les piézomètres ne sont pas connectées entre elles. Cette hypothèse serait confirmée par les observations réalisées lors des prélèvements. Le Pz1 s'assèche après 20 litre d'eau pompée alors que les Pz2 et PzA bénéficient d'une bonne réalimentation avec un niveau dynamique légèrement plus faible que le niveau statique.
 - Forte arrivée d'eau recoupée en Pz2. En effet lors des investigations de terrain des travaux étaient réalisés en parallèle à environ 50 m au nord sur un réseau d'incendie avec un niveau dans la fouille à -1 m (voir reportage photographique en APPENDIX A). Il pourrait s'agir d'une fuite d'eau sur ce réseau dans la zone des travaux.

La carte piézométrique est présentée en Figure 13.

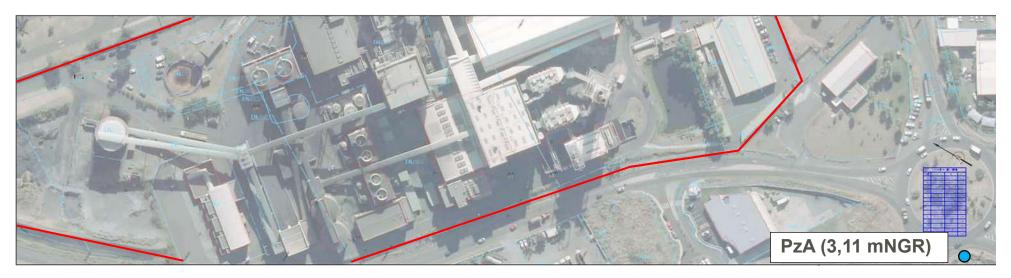


Figure 13: Carte des niveaux statiques (sur site et hors site)

Observations organoleptiques et mesures in-situ

Les observations, indices organoleptiques et mesures in-situ relevés lors des prélèvements sont répertoriés dans les fiches de prélèvement présentées APPENDIX F.

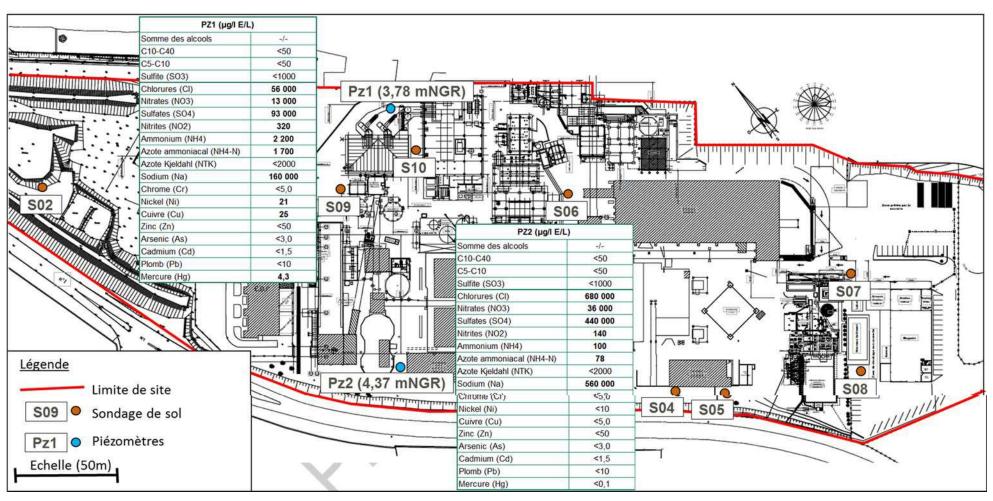
Les mesures montrent :

- Température comprise entre 23,25 et 28,98°C;
- Conductivité comprise entre 1266 et 3391 µS/cm;
- Le pH compris entre 7,1 et 7,12;
- Le potentiel redox compris entre 231 et 100 mV ;
- La teneur en oxygène dissous comprise entre 0,1 et 4,66 mg/l.

Les valeurs de conductivité sont élevées en Pz2 et témoignent d'un milieu très chargé en minéraux (conductivité pour de l'eau douce généralement inférieure à 2000 µS/cm).

5.6.3 Résultats analytiques pour les eaux souterraines

Les résultats des analyses en laboratoire sont synthétisés dans le tableau ci-dessous et les certificats d'analyse du laboratoire sont joints en APPENDIX H. La **Figure 14** présente la synthèse des principaux résultats sur les eaux souterraines.


Tableau 25: Résultats d'analyse sur les sols

Désignation d'échantillon	Unité	Valeur de comparaison	PZA	PZ1	PZ2-D*
Méthanol	μg/l E/L		<1000	<1000	<1000
Éthanol	μg/l E/L		<100	<100	<100
2-Propanol	μg/l E/L		<100	<100	<100
tert-Butanol	μg/l E/L		<100	<100	<100
n-Propanol	μg/l E/L		<100	<100	<100
2-Méthyl-1-propanol (isobutanol)	μg/l E/L		<100	<100	<100
1-Butanol	μg/l E/L		<100	<100	<100
2-(3)-Pentanol	μg/l E/L		<100	<100	<100
3-Hexanol	μg/l E/L		<100	<100	<100
1-Hexanol	μg/l E/L		<100	<100	<100
4-Heptanol	μg/l E/L		<100	<100	<100
1-Heptanol	μg/l E/L		<100	<100	<100
1-Octanol	μg/l E/L		<100	<100	<100
2-Butanol	μg/l E/L		<100	<100	<100
2-Ethyl-1-hexanol	μg/l E/L		<100	<100	<100
Paramètres globaux / Indices					
Indice hydrocarbure C10-C40	μg/l E/L	1000 (a)	<50	<50	<50
Hydrocarbures > C10-C12	μg/l E/L	` ,	<50	<50	<50
Hydrocarbures > C12-C16	μg/I E/L		<50	<50	<50
Hydrocarbures > C16-C21	μg/l E/L		<50	<50	<50
Hydrocarbures > C21-C35	μg/I E/L		<50	<50	<50
Hydrocarbures > C35-C40	μg/l E/L		<50	<50	<50
Indice hydrocarbure (C5-C10)	μg/I E/L		<50	<50	<50
Somme des C5	μg/l E/L		<8,0	<8,0	<8,0
Somme des C6	μg/I E/L		<8.0	<8.0	<8.0
Somme des C7	μg/I E/L		<8,0	<8,0	<8,0
Somme des C8	μg/I E/L		<8,0	<8,0	<8,0
Somme des C9	μg/I E/L		<8,0	<8,0	<8,0
Somme des C10	μg/l E/L		<8,0	<8,0	<8,0
Cations, anions et éléments non métalliques	, ,				
Sulfite (SO3)	μg/l E/L		<1000	<1000	<1000
Chlorures (CI)	μg/I E/L		280 000	56 000	740 000
Nitrates (NO3)	μg/l E/L		38 000	1 3000	35 000
Sulfates (SO4)	μg/l E/L		630 000	93 000	450 000
Nitrites (NO2)	μg/l E/L		89	320	120
Ammonium (NH4)	μg/l E/L		100	2 200	100
Azote ammoniacal (NH4-N)	μg/I E/L		78	1 700	78
Azote Kjeldahl (NTK)	μg/l E/L		<2000	<2000	<2000
Eléments	, -				
Sodium (Na)	μg/l E/L		290 000	160 000	570 000
Chrome (Cr)	μg/I E/L		<5,0	<5,0	<5,0
Nickel (Ni)	μg/I E/L		<10	21	<10
Cuivre (Cu)	μg/l E/L		<5,0	25	<5,0
Zinc (Zn)	μg/I E/L		<50	<50	<50
Arsenic (As)	μg/l E/L		<3,0	<3,0	<3,0
Cadmium (Cd)	μg/I E/L		<1,5	<1,5	<1,5
Plomb (Pb)	μg/l E/L		<10	<10	<10
Mercure (Hg)	μg/l E/L		<0,1	4,3	<0,1

^{**}Pz2-D est le doublon de l'échantillon prélevé sur le Pz2. Il est plus conservateur de présenter les valeurs mesurées dans l'échantillon Pz2-D qui sont supérieures à celles mesurées dans l'échantillon Pz2.

Lég	gende_	
	<xx< th=""><th>Valeur inférieure à la limite de quantification du laboratoire</th></xx<>	Valeur inférieure à la limite de quantification du laboratoire
	xx	Valeur supérieure à la limite de quantification du laboratoire
	XX	Si valeur de comparaison existante, valeur supérieure à la limite de quantification du laboratoire et inférieure à la valeur de comparaison

<xx< th=""><th>Valeur inférieure à la limite de quantification du laboratoire</th></xx<>	Valeur inférieure à la limite de quantification du laboratoire
ХХ	Valeur supérieure à la limite de quantification du laboratoire
XX	Si valeur de comparaison existante, valeur supérieure à la limite de quantification du laboratoire et inférieure à la valeur de comparaison
XX	Si valeur de comparaison existante, valeur supérieure à la valeur de comparaison

Figure 14: Carte de qualité des résultats sur les eaux souterraines (sur site et hors site)

6.0 INTERPRETATION DES RESULTATS ET DISCUSSION DES INCERTITUDES

6.1 Interprétation des résultats pour les sols

6.1.1 Méthodologie d'interprétation

La méthodologie annexée à la Note du 19 avril 2017 du Ministère en charge de l'environnement indique la nécessité de comparer les résultats des analyses avec les valeurs de fonds géochimiques quand celles-ci sont disponibles.

Dans le cadre du site objet du présent rapport, ces valeurs ont été prises en compte à titre indicatif et comme décrit ci-après.

Pour les métaux et métalloïdes (Eléments Traces Métalliques) une étude du BRGM réalisée en 2008 (*Rapport BRGM/RP 56576-FR – Cartographie des teneurs des Eléments Traces Métalliques (ETM) sur l'ensemble de l'île de la réunion*) a réalisé un tableau statistique pour les 8 éléments sur 70 échantillons de sols réalisés au droit de l'île de la réunion correspondant à des sols naturels ; Les valeurs du 3ème quartile de ce tableau (Tableau 23) peuvent être utilisées en tant que fond géochimique et peuvent être utilisées en tant que valeur d'analyse de la situation. Par ailleurs les concentrations en métaux du site sont également comparées avec les concentrations observées au droit des échantillons hors site (valeurs de référence locales).

Pour l'ensemble des paramètres organiques (hydrocarbures, CAV, HAP), leur présence n'est pas attendue dans des terrains dont la qualité n'a pas été perturbée par une activité anthropique. Les teneurs seront donc comparées aux limites de détection du laboratoire Wessling. Par ailleurs les résultats individuels seront comparés à la gamme des mesures réalisées sur le site pour chaque paramètre.

Un deuxième niveau est défini à 500 mg/kg MS pour les hydrocarbures totaux C10-C40, 6 mg/kg MS pour la somme des CAV et 50 mg/kg MS pour la somme des HAP. Ces valeurs de comparaison sont utilisées à titre indicatif pour hiérarchiser les niveaux de concentrations mesurés.

Ces valeurs sont utilisées pour donner une échelle de lecture des résultats analytiques et apprécier le degré de contamination des différents milieux. En aucun cas ces critères ne peuvent être considérés comme des seuils de réhabilitation.

6.1.2 Interprétation des résultats

Zone 1 : Zones de stockage de charbon, cendres volantes et scories

Ancienne installation concernée	Zones de stockage de charbon, cendres volantes et scories		
Nombre de sondages concernés	6 sondages		
Nom des sondages concernés	S01 à S06		
Intervalle de profondeur de la Aucun intervalle impacté, tout - inférieures à la limite de qua - inférieures aux valeurs de co - pour les métaux deux concritères de comparaison mais		antification d comparaison ncentrations	u laboratoire ; s ; sont supérieures à l'un des
Gamme de teneurs des paramètres quantifiés	HAP quantifié au droit du sondage S01 entre 0 et 1 m	Sulfates	39 <xx<630 kg="" mg="" ms<="" td=""></xx<630>

	Métaux lourds et sulfates quantifiés sur tous les points		22 <cr<73 kg="" mg="" ms<br="">70<ni<280 kg="" mg="" ms<br="">20<cu<62 kg="" mg="" ms<br="">62<zn<140 kg="" mg="" ms<="" th=""></zn<140></cu<62></ni<280></cr<73>
		HAP	1,4 mg/kg MS en S01
Délimitation des impacts	Aucun impact significatif n'a été identifié - non applicable		

Zone 2 : Zones de stockage des produits pétroliers

Ancienne installation concernée	Zones de stockage des produits pétroliers (cuves de fuel domestique, stockage des huiles)		
Nombre de sondages concernés	2 sondages		
Nom des sondages concernés	S07 et S08		
Intervalle de profondeur de la pollution	Aucun intervalle impacté, toutes les concentrations sont soit - inférieures à la limite de quantification du laboratoire ; - inférieures aux valeurs de comparaisons.		
Gamme de teneurs des	Hydrocarbures C10- HC C5-C10 <lq 10="" kg="" mg="" ms<="" td="" à=""><td></td></lq>		
paramètres quantifiés C40 quantifiés au droit du sondage S07 –	. HC C10 C40 <320 mg/kg MS		
	concentration inférieure à la valeur de comparaison BTEX <lq 0,1="" kg="" mg="" ms<="" td="" à=""><td></td></lq>		
Délimitation des impacts	Aucun impact significatif n'a été identifié - non applicable		

Zone 3 : Zone de stockage des produits de traitement des eaux

Ancienne installation concernée	Zone de stockage des pr	oduits de traitement des eaux	
Nombre de sondages concernés	4 sondages		
Nom des sondages concernés	S09 à S12		
Intervalle de profondeur de la pollution	Une concentration en hydrocarbure identifiée entre 0 et 1 mètre Pour les composés alcools et métaux aucun intervalle impacté, toutes les concentrations sont soit - inférieures à la limite de quantification du laboratoire, - pour les métaux une concentration est supérieure à l'un des critères de comparaison mais inférieures au second critère.		un intervalle impacté, toutes laboratoire, upérieure à l'un des critères
Gamme de teneurs des	Impact en hydrocarbure en S10 en surface uniquement entre 0 et	HC C5-C10	<lq 10="" kg="" mg="" ms<="" td="" à=""></lq>
paramètres impactant		HC C10-C40	<1400 mg/kg MS
1 m		Métaux lourds	24 <cr<77 kg="" mg="" ms<="" td=""></cr<77>

			78 <ni<240 kg="" mg="" ms<br="">22<cu<54 kg="" mg="" ms<br="">87<zn<110 kg="" mg="" ms<br="">As = 2 mg/kg MS</zn<110></cu<54></ni<240>
		Alcools	<lq 20="" 200="" kg="" mg="" ms<="" td="" à=""></lq>
Délimitation verticale de la concentration en hydrocarbure	Délimitation par S10 (4-5)		
Délimitation horizontale	La délimitation horizontale n'est pas réalisée		

Zone 4 : Hors site

Ancienne installation concernée	Non applicable		
Nombre de sondages concernés	Non applicable		
Nom des sondages concernés	PS1 et PS2		
Intervalle de profondeur de la pollution	Non applicable		
Gamme de teneurs des paramètres quantifiés	Les concentrations des métaux lourds métaux hors site sont inférieures aux valeurs du fond géochimique local mesuré dans l'étude du BRGM de 2008 – excepté pour le cadmium est le plomb 180 <cr<370 120<zn<150="" 160<cu<69="" 160<ni<290="" as="3" kg="" mg="" ms="" ms<="" pb="27" td=""></cr<370>		
Délimitation des impacts	Aucun impact significatif n'a été identifié - non applicable		

Synthèse

Pour les paramètres analysés, les résultats analytiques des échantillons de sol montrent :

- Les métaux (chrome, nickel, cuivre, zinc, arsenic et plomb) sont quantifiés sur tous les sondages avec des concentrations qui sont généralement inférieures aux valeurs du fond géochimique local (données par l'étude du BRGM de 2008 ou données par l'analyse des prélèvements hors site) excepté pour 3 échantillons qui présentent des dépassement d'un des deux critères de comparaison (zinc et nickel);
- Les hydrocarbures sont quantifiés sur 2 sondages S07(0-1) et S10(0-1). La concentration au droit du sondage S10(0-1) est égale à 1400 mg/kg MS et dépasse la valeur de comparaison.
- Les HAP sont quantifiés au droit du sondage S01(0-1). La concentration est inférieure à la valeur de comparaison.
- Les autres paramètres (C5-C10, BTEX, Phénols et alcools) ne sont pas quantifiés.

6.2 Interprétation des résultats pour les eaux souterraines

6.2.1 Critères d'interprétation

Conformément à la méthodologie de gestion des sites et sols pollués, l'évaluation de l'impact sur les eaux souterraines a été réalisée en utilisant les valeurs de gestions réglementaires françaises et les objectifs de qualité des milieux.

D'après l'étude environnementale et historique, aucun usage sensible des eaux souterraines n'a été recensé sur le site ou en aval hydraulique du site dans un rayon de 3 km. Dans ce contexte, les résultats des analyses sont donc comparés à titre indicatif :

- Aux valeurs de l'arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines, dont l'interprétation est précisée par la circulaire du 23 octobre 2012 :
- Aux limites de qualité des eaux destinées à la consommation humaine, définies respectivement dans les Annexes I et II de l'Arrêté du 11 janvier 2007 (limite de qualité des eaux brutes et des eaux de boisson). Si, pour certains paramètres, il n'existe aucune norme française ou européenne, les valeurs guides de potabilité définies par l'OMS sont alors appliquées.

Les valeurs de référence retenues sont présentées dans le tableau des résultats analytiques (voir Tableau 25).

6.2.2 Interprétation des résultats

Paramètre	Teneur max	Ouvrage associé	Nombre d'ouvrage	
	(µg/l)	à la teneur max	Avec détection du paramètre	Avec teneur > à critère de référence
Alcools	< LQ	n/a	0 /3	0 /3
Hydrocarbures C10-C40	< LQ	n/a	0 /3	0 /3
Hydrocarbures C5-C10	< LQ	n/a	0 /3	-
Chlorures (CI)	680 000	Pz2	3 /3	-
Nitrates (NO3)	38 000	PzA	3 /3	-
Sulfates (SO4)	630 000	PzA	3 /3	-
Nitrites (NO2)	320	Pz1	3 /3	-
Ammonium (NH4)	2200	Pz1	3 /3	-
Azote ammoniacal (NH4-N)	1700	Pz1	3 /3	-
Sodium (Na)	560 000	Pz2	3 /3	-
Nickel (Ni)	21	Pz1	1 /3	-
Cuivre (Cu)	25	Pz1	1 /3	-
Mercure (Hg)	4,3	Pz1	1/3	-

^{- :} pas de valeur de référence

- Aucun des paramètres alcools et hydrocarbures n'est détecté sur les piézomètres.
- Les cations, anions et éléments métalliques sont détectés avec les gammes de concentrations suivantes :
 - Entre 56 000 et 680 000 μg/l de chlorures ;
 - Entre 13 000 et 36 000 μg/l de nitrates ;
 - Entre 93 000 et 630 000 μg/l de sulfates ;
 - Entre 89 et 320 μg/l de nitrites ;
 - Entre 100 et 2200 μg/l d'ammonium ;
 - Entre 78 et 1700 μg/l d'azote ammoniacal ;
 - Entre 160 000 et 560 000 μg/l de sodium ;
 - Du nickel (21 μg/l), du cuivre (25 μg/l) et du mercure (4,3 μg/l) en Pz1

Une cartographie de la qualité des eaux souterraines en date du 31/05/18 et du 01/06/18 est présentée en Figure 14.

6.2.3 Bilan amont-aval

Globalement aucun parallèle amont aval ne peut être établi compte tenu des concentrations observées et des niveaux statiques mesurés (voir paragraphe 5.6.2 sens d'écoulement non cohérent).

6.2.4 Synthèse

Les résultats analytiques des échantillons d'eau souterraine montrent, pour les paramètres analysés :

- L'absence de détection des paramètres alcools et hydrocarbures ;
- La détection des cations, anions et éléments métalliques avec des concentrations comprises entre 78 μg/l et 680 000 μg/l selon les paramètres. Ces valeurs ne sont pas anormales dans un contexte volcanique.

6.3 Discussion sur les incertitudes de ces résultats.

Les contrôles qualité réalisés sur les échantillons de doublon (eaux et sols) et de blanc de transport (eaux) indiquent que les échantillons réalisés et les résultats associés sont conformes et exploitables.

Incertitude sur le sens d'écoulement a été identifié lors de la piézométrie synchrone du fait d'une potentielle fuite sur un poteau incendie 50 m au nord du Pz2.

Un sondage entre les salles des machines GTA3 et GTA1&2 à proximité de la chaudière 3 était prévu dans le programme prévisionnel. Ce sondage n'a pas été validé par le site du fait de la trop grande quantité de réseaux sensibles passant à proximité.

7.0 SCHEMA CONCEPTUEL

L'analyse de l'ensemble des éléments recueillis au cours de cette étude permet d'identifier les sources, les vecteurs et les enjeux permettant d'établir le schéma conceptuel du site, qui se présente de la manière suivante :

Tableau 26: Schéma conceptuel du site

	Sources potentielles de contamination Une concentration en S10(0-1) en hydrocarbures C10-C40 (1400 mg/kg MS). La présence d'anions et de cations dans les eaux souterraines sur site et hors site avec de concentrations comprises entre 78 et 680 000 µg/l;					
	Envol de poussières		Non retenu	Zone majoritairement recouverte d'enrobé – absence de sol nu impacté		
	Ruissellement en surface		Non retenu	Zone recouverte d'enrobé – collecte des eaux de ruissèlement et traitement avant rejet dans le milieu		
	Infiltration dans le sous-sol		Retenu	Géologie perméable favorable aux infiltrations - zone majoritairement recouverte d'enrobé - collecte des eaux de ruissèlement et traitement avant rejet dans le milieu		
t	Migration latérale	dans le sous-sol	Retenu	Géologie perméable favorable à une migration latérale		
Voies de transfert	Dégazage des sols (volatilisation des composés volatils)		Retenu	Géologie perméable favorable au dégazage - zone majoritairement recouverte d'enrobé		
Voies	Migration via les eaux souterraines		Retenu	Géologie perméable nappe présente à environ 10 m		
	Dégazage des eaux souterraines impactées (volatilisation des composés volatils)		Retenu	Géologie perméable nappe présente à environ 10 m		
	Transfert eaux souterraines <-> eaux superficielles		Retenu	Géologie perméable nappe présente à environ 10 m – Ravine du Gol et Goyave vulnérable		
	Migration via les	eaux superficielles	Retenu	Ravine du Gol et Goyave vulnérable		
	Dégazage des eaux superficielles (volatilisation des composés volatils)		Retenu	Ravine du Gol et Goyave vulnérable		
	Perméation à travers les réseaux d'eau potable		Non retenu	Réseau d'eau potable éloigné du sondage S10		
	Sur site Usagers et travailleurs présents sur site	Contact direct sols	Non retenu	Zone majoritairement recouverte d'enrobé, absence de sol nu impacté		
		Inhalation poussières	Non retenu	Zone majoritairement recouverte d'enrobé, absence de sol nu impacté		
Enjeux		Ingestion sols	Non retenu	Zone majoritairement recouverte d'enrobé, absence de sol nu impacté		
		Inhalation vapeurs issues des sols et/ou des eaux souterraines	Non retenu	Zone majoritairement recouverte d'enrobé pas d'impact en composés volatils		
		Ingestion eaux souterraines	Non retenu	Absence d'usage d'eau potable à proximité		
		Ingestion eaux potables (AEP)	Non retenu	Réseau d'eau potable éloigné du sondage S10		

	Hors site Riverains et	Contact direct sols	Non retenu	Zone majoritairement recouverte d'enrobé, absence de sol nu impacté
	usagers des eaux souterraines	Inhalation poussières	Non retenu	Zone majoritairement recouverte d'enrobé, absence de sol nu impacté – Absence de riverain à proximité
		Ingestion sols	Non retenu	Zone majoritairement recouverte d'enrobé, absence de sol nu impacté
		Inhalation vapeurs issues des sols et/ ou des eaux souterraines	Non retenu	Absence d'impact en composés volatils
		Ingestion eaux souterraines	Non retenu	Absence d'usage d'eau potable à proximité
		Ingestion végétaux autoproduits (potagers)	Non retenu	Absence de potagers à proximité
	Usagers des eaux superficielles	Contact direct eaux superficielles	Non retenu	Absence d'impact dans les eaux souterraines
	supernicieries	Inhalation eaux superficielles	Non retenu	Absence d'impact dans les eaux souterraines
		Ingestion eaux superficielles	Non retenu	Absence d'impact dans les eaux
	Milieu naturel Absence de milieu naturel vulnérable à proximité			\$

La Figure 15 reprend les éléments principaux du schéma conceptuel du site sur un plan de coupe.

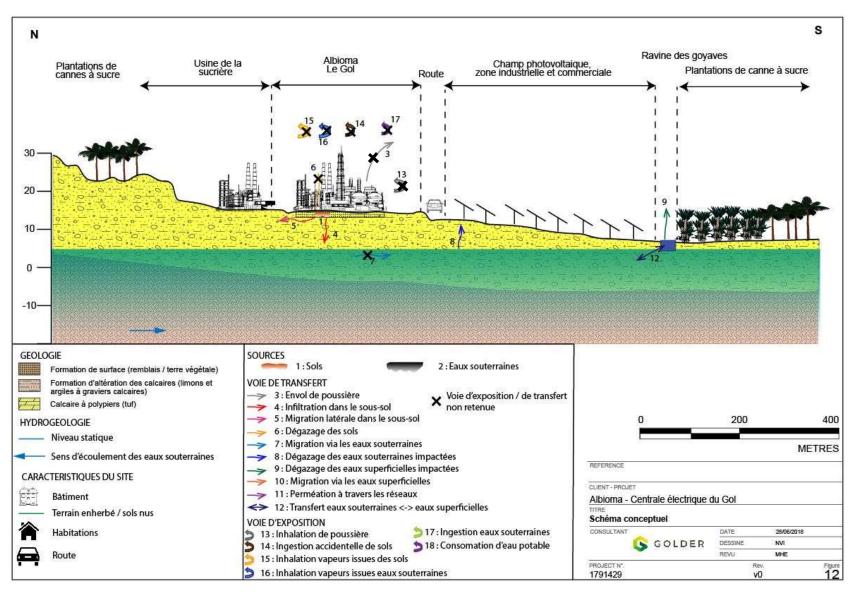


Figure 15: Schéma conceptuel

8.0 CONCLUSIONS

La société Albioma Le Gol a missionné Golder Associates pour constituer un rapport de base sur son installation de combustion localisé 1 Route Nationale, le Gol, 97450 Saint Louis. Cette étude est requise pour se conformer à la Directive IED et à sa transcription en droit français, et au vue de la publication des conclusions du BREF Grandes Installations de Combustion (BREF GIC) le 17 août 2017.

L'objectif de cette étude est de compiler les informations sur le site et de réaliser les prestations suivantes

- A100 (visite du site);
- A110 (études historiques, documentaires et mémorielles);
- A120 (études de vulnérabilité des milieux) ;
- A200 (prélèvements, mesures, observations et/ou analyses sur les sols);
- A210 (prélèvements, mesures, observations et/ou analyses sur les eaux souterraines).

Synthèse de la visite de site

La visite du site a été réalisée le 2 mars 2018 par Maureen Herwana de Golder, accompagnée d'Audrey Hernandez, coordinatrice HSE pour Albioma le Gol.

Le site, construit en 1994, accueille deux tranches fonctionnant au charbon/bagasse et une tranche fonctionnant uniquement au charbon, des locaux de production d'électricité, des tours d'aéroréfrigérant, des installations de traitement des eaux, des bâtiments annexes et des stockages.

Quelques prélèvements de sol de surface et à faible profondeur ont été réalisés dans le cadre du dossier de la demande d'exploiter du site en 2014 et deux piézomètres sont présents à proximité du bassin d'infiltration qui récupère les eaux venant de la station d'épuration du site et qui est situé à environ 500 m au sud du site. D'après les documents disponibles, les investigations réalisées ne sont pas exhaustives au regard des traceurs définis préalablement. De ce fait, Golder recommande la réalisation d'une caractérisation de la qualité des sols dans le cadre du présent mémoire IED.

Synthèse des investigations

Les investigations se sont déroulées entre le 28/05/2018 et le 01/06/2018 et ont consisté en :

- La réalisation de 12 sondages de sol à des profondeurs comprises entre 2,5 et 5 mètres de profondeur;
- L'installation de 2 piézomètres à 15 m de profondeur ;
- La réalisation d'analyses en laboratoire pour les milieux sols et eaux souterraines.

Les paramètres suivants ont été recherchés en fonction des activités identifiées et des précédents diagnostics environnementaux :

- dans les sols : Pack des 8 métaux, Sulfates, HAP, Indice phénol (S01 à S06), Hydrocarbures C5-C40 (S06 à S12), BTEX (S07 et S08), Pack des 8 métaux, Sodium, pH, Sulfites, Alcools (S09 à S12);
- dans les eaux souterraines: Hydrocarbures totaux C5-C40, Pack des 8 métaux, Pack des produits de traitement des eaux: sodium, pH, sulfites, alcools, NH4, azote Kjeldahl, anions (chlorures, nitrates, sulfates, nitrites).

Résultats pour les sols

Les investigations ont permis de confirmer le contexte géologique et hydrogéologique du site observé lors des précédentes investigations :

- De 0 à 15 m environ : Alluvions fluviaux-marine, sable plus ou moins limoneux noirâtre à limon sableux noirâtre (avec présence de remblai en surface sur quelques points);
- A partir de 12 m : sur un point observation du substrat basaltique avec la présence de blocs de basalte ;

Les observations sur site et les analyses en laboratoire permettent de préciser la qualité des sols :

- Les métaux (chrome, nickel, cuivre, zinc, arsenic et plomb) sont quantifiés sur tous les sondages avec des concentrations qui sont généralement inférieures aux valeurs du fond géochimique local (données par l'étude du BRGM de 2008 ou données par l'analyse des prélèvements hors site) excepté pour 3 échantillons qui présentent des dépassement d'un des deux critères de comparaison ;
- Les hydrocarbures sont quantifiés sur 2 sondages. La concentration au droit du sondage S10(0-1) est égale à 1400 mg/kg MS et dépasse la valeur de comparaison;
- Les HAP sont quantifiés au droit du sondage S01(0-1). La concentration est inférieure à la valeur de comparaison;
- Les autres paramètres (C5-C10, BTEX, Phénols et alcools) ne sont pas quantifiés.

Résultats pour les eaux souterraines

Les relevés piézométriques réalisés le 01 juin 2018 sur les 3 ouvrages indiquent

- Un niveau statique qui s'établit entre 7,24 m et 11,7 m de profondeur par rapport au repère PEHD soit une cote comprise entre 3,11 et 4,37 m NGR;
- Le sens d'écoulement général déduit des relevés des niveaux statiques est orienté vers le sud-est, ce sens d'écoulement n'est pas cohérent avec la réalité topographique de la zone d'étude (voir 5.6.2).

Les analyses en laboratoire permettent de préciser la qualité des eaux souterraines sur site (Pz1 et Pz2) et hors site (PzA) avec :

- L'absence de détection des paramètres alcools et hydrocarbures sur tous les piézomètres ;
- La détection des cations, anions avec des gammes de concentrations comprises entre 78 et 680 000 μg/l pour les chlorures, nitrates, sulfates, nitrites, ammonium, azote ammoniacal et sodium sur les 3 piézomètres (valeurs qui ne sont pas anormales dans un contexte volcanique);
- La détection des éléments métalliques avec du nickel (21 μg/l), du cuivre (25 μg/l) et du mercure (4,3 μg/l) en Pz1.

Schéma conceptuel

Sur la base des informations disponibles, le diagnostic environnemental met en évidence la présence de concentration en hydrocarbure dans les sols sur un point de sondage entre 0 et 1 m;

En l'absence de terre nue à proximité de la zone de S10, les risques de contact direct, ingestion des sols contaminés ne sont pas retenus. Le risque d'inhalation des gaz du sol (dégazage des sols ou des eaux souterraines) par les travailleurs et usagers n'est pas retenu sur site (présence d'enrobé). Une nappe souterraine est présente, mais au vu de l'absence de détection des composés volatils, les risques d'ingestion des eaux souterraines et de migration vers les eaux superficielles sont écartés.

Ainsi aucun enjeu significatif n'a été identifié lors de l'étude.

Maureen Herwana

Chef de projet

Page Signatures

Golder Associates sarl

Sébastien Bardet Ingénieur de projet

SBA/MHE/TIM

P.O

Thierry Imbert

Directeur de projet

\\lyn1-s-main01\projects\2017_projets\1791429_albioma_rapport de base\8- rapport\2_albioma le gol\1791429_r02_albioma le gol_rapport de base_v1.docx

APPENDIX A

Reportage photographique

Photo 2 : Stockage de charbon à l'extérieur du site

Photo 3 : Silos de charbon

Photo 4 : Stockage de mélange des cendres volantes et scories à l'extérieur du site

Photo 5 : Cuve aérienne de gasoil non routier

Photo 6 : Cuve semi-enterrée de gasoil non routier

Photo 7 : Zone de dépotage de la cuve semi-enterrée de gasoil non routier

Photo 8 : Stockage de produits de traitement des eaux

Photo 9: Stockage de produits de traitement des eaux (2)

Photo 10: Local de stockage des chaux

Photo 11 : Mise en station Pz1

Photo 12: Mise en station S02

Photo 14: Mise en station S05

Photo 15 : Mise en station S04

Photo 16: Mise en station S12

Photo 17: Mise en station Pz2/S03

Photo 18: Mise en station S11

Photo 19: Mise en station S10

Photo 20: Mise en station S06

Photo 21 : Mise en station S08

Photo 22 : Vue contexte PS1

Photo 23 : Vue éloignée PS1

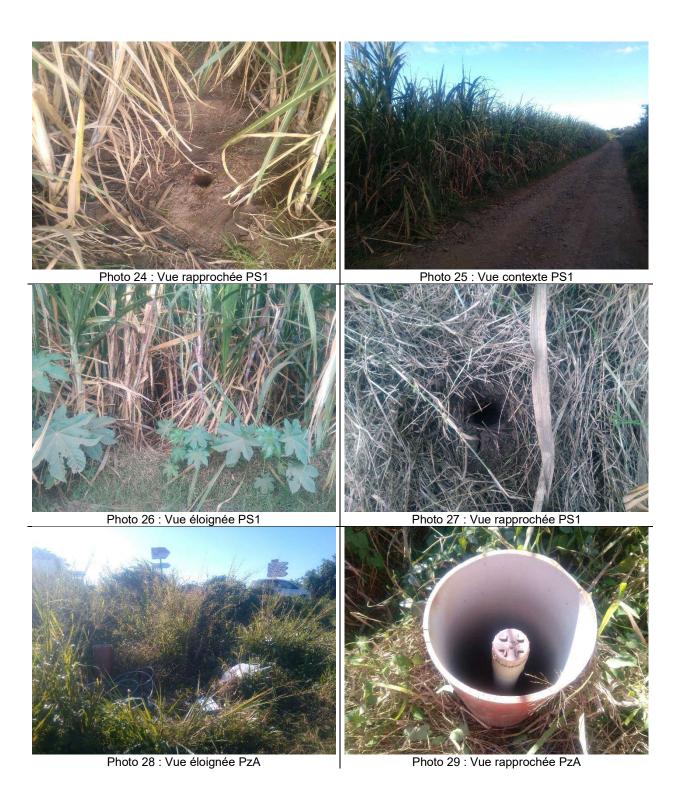


Photo 30 : Vue éloignée Pz1

Photo 31 : Vue rapprochée Pz1 (Ouvrage temporaire non finalisé – margelle, capot – rebouché en fin de chantier)

Photo 32 : Vue rapprochée Pz2 (Ouvrage temporaire non finalisé – margelle, capot – rebouché en fin de chantier)

Photo 33 : Travaux sur le réseau incendi à 50 m au nord de Pz2

Photo 34 : Travaux sur le réseau incendi à 50 m au nord de Pz2

APPENDIX B

Photographies aériennes

Photographie aérienne Date 1949 1978

Photographie aérienne Date 1997 2003

Date Photographie aérienne

2011

APPENDIX C

Liste des Produits Utilisés sur Site

Nom de substance	Composant	Utilisation	Lieu d'utilisation	Consommation annuelle estimée (kg)	Phrases de risques	asse de dangerosité reten	Etat	Retenu / Non retenu
acide sulfamique		Lessivage chimique	traitement des eaux	2800	N/A	N/A		non retenu
biflorure d'ammonium		Lessivage chimique	traitement des eaux	560	H301, H314	S2	flocons	non retenu
kebosol A		Lessivage chimique	traitement des eaux	60	N/A	N/A		non retenu
lithosolvent EB		Lessivage chimique	traitement des eaux	180	N/A	N/A	poudre	non retenu
struktol SB2032		Lessivage chimique	STEP	60	N/A	N/A		non retenu
chaux hydratée	Hydroxyde de calcium	Traitement des fumées	chaudière	900	H315, H318, H335	S1	poudre fine	non retenu
solution d'urée à 40%		Traitement des fumées	chaudière	1600	N/A	N/A		non retenu
lessive de soude 40%	hydroxyde de sodium	Neutralisation STEP (Neutralisation fosse neutrale)	STEP	35000	H290, H314	S2	liquide	non retenu
acide chlorhydrique		Neutralisation STEP Neutralisation fosse neutrale Régénération chaîne déminée	STEP	138000	H290, H314, H335	S2	liquide	non retenu
peroxyde d'hydrogène 50%		Désinfection bassin d'infiltration	STEP	14400	H318, H272, H314, H335	S2	liquide	non retenu
sel	chlorite de sodium	Electrolyseur	traitement des eaux	6000	N/A	N/A	cristaux	non retenu
acide acétique 9%		Electrolyseur	traitement des eaux	6000	H226, H314	S2	liquide	retenu
morpholine		Traitement d'eau chaudière	traitement des eaux	600	H314, H311, H332, H302, H226	S2	liquide	retenu
eau de javel	hypochlorite de sodium	Traitement d'eau circuit de refroidissement	traitement des eaux	150000	H290, H314, H318, H335, H400	S2	liquide	retenu
acide sulfurique	acide sulfurique	Traitement d'eau circuit de refroidissement	traitement des eaux	70000	H314	S2	liquide	retenu
soude caustique	hydroxyde de sodium	Neutralisation fosse neutrale Régénération chaîne déminée	traitement des eaux	120000	H314, H290	S2	solide	non retenu
phosphate trisodique		Traitement d'eau chaudière	traitement des eaux	300	H315, H319, H335	S1	solide	non retenu
Nalco 3DT157		Traitement d'eau circuit de refroidissement	traitement des eaux	560	N/A	N/A		non retenu
Nalco 3DT487	acide phosphorique (5-10%)	Traitement d'eau circuit de refroidissement	traitement des eaux	13000	H319	S1	liquide	retenu
Eliminox	carbohydrazide (5-10%)	Traitement d'eau chaudière	traitement des eaux	2300	H317	S1	liquide	retenu
Nalco 72215	hydroxyde de sodium (5-10%)	Traitement d'eau évaporateur	traitement des eaux	3060	H314, H318	S2	liquide	retenu
Nalco 77216	sulfite de potassium	Traitement d'eau évaporateur	traitement des eaux	1400	H315, H319, H335	S1	liquide	retenu
Nalco 1826	diéthyléthanolamine (25-30%) morpholine (5-10%)	Traitement d'eau chaudière	traitement des eaux	500	H314, H335	S2	liquide	retenu
Nalco 71307	Distillats légers (pétrole), hydrotraités (10- 30%) Alcools ethoxylés (1-3%)	flocculant	traitement des eaux	1900	H319	S1	émulsion	retenu
Nalco 3DT227C	acide chlorhydrique (10-30%) chlorure de zinc (5-10%) tolytriazole (1-5%)	traitement de tour d'aéroréfrigérant	traitement des eaux	780	H314, H335, H411	S2	liquide	retenu
Biodes Neutre	chlore actif	Traitement d'eau chaudière	traitement des eaux		N/A	N/A	liquide	non retenu
charbon		installation de combustion	chaudière	>100	H350	S2	solide pulvérulents	retenu
Gazole non routier		installation de combustion	chaudière	50700	H226, H304, H332, H315, H351, H373, H411	S2, E2	liquide	retenu
cendres volantes+scories		installation de combustion	chaudière	>100	H350	S2	solide pulvérulents	retenu

APPENDIX D

Coupes Lithologiques

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

DATE AVANT TROU:

CLIENT: Albioma Le Gol DATE FORAGE: 29/05/18

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP SITE: 1 Route nationale Le Gol, 97440 Saint Louis

INGENIEUR: Sébastien Bardet

X: (Réf:)

Pz1

PAGE: 1 DE 1

REFERENCE: 1791429-ALG

REVISEUR: Maureen Herwana ()

Y: (Réf:) Z: (Réf:)

		RENCE		J 172	9-ALG			REVISEUR	R: Maureen Herwa		
—	F	orage		z	Description Géol	ogique			Echantillonnage	•	Equipment
METHODE	EAU	PROFONDEUR	(mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
		1— 1— 2— 3—	3,50	×	Remblai de limon et de blocs Sable alluvionnaire, matrice limoneuse	Sec					Cutting
GINI FK 13,GDI 14/08/2018 09:41:30 bage extérieur ø 110 mm		-	6,20	× × × ×	Limons sableux marron et blocs	Humide		RAS			Bentonite
FRIGEB FR WELL (FR). C: USERSIPUBLICUDUCUMENTS BENTLET (BINT) PROJECT SUDREDAWORD, FIELD COPT OF		8— 9— 10— 11— 12— 13— 14— 15—	11,00	* × × × × × × × × × × × × × × × × × × ×	Limons sableux marron et blocs Sable limoneux et blocs Blocs de basalte Arrêt du sondage à 15,40 m	Mouillé					Sable (massif filtrant) Crépine
KY V15(FF		16			Arrêt du sondage à 15,40 m						

DATE D'EXPEDITION DES ECHANTILLONS AU LABORATOIRE : Envois : Réception :

REMARQUES: Cutting étalés dans les espaces verts, piézomètre rebouché après les prélèvements, (sable sur la partie crépinée, bonchon de bentonite sur la partie pleine)

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

PAGE: 1 DE 1

Pz2

CLIENT: Albioma Le Gol DATE FORAGE: 06/06/18

DATE AVANT TROU:

PROJET:

Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP

SITE: 1 Route nationale Le Gol, 97440 Saint Louis

X: (Réf:) INGENIEUR: Sébastien Bardet

REFERENCE: 1791429-ALG

Y: (Réf:) REVISEUR: Maureen Herwana () Z: (Réf:)

		orage			9-ALG Description Géolo	ogique	9	1/2/10201	Echantillonnage		Z: (Ref :) Equipment
МЕТНОВЕ	EAU	PROFONDEUR	(mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
e ø 90 mm tubage extérieur ø 110 mm		3—	3,00	× × × × × × × × × × × × × × × × × × ×	Enrobé Limon sableux grisâtre et noirâtres Sable limoneux noirâtre Sable limoneux brun	Sec		RAS			Cutting
Tricon	>	10 — 11 — 12 — 13 — 14 — 15	15,00	X	Arrêt du sondage à 15,00 m	Mouillé					Sable (massif filtrant) Crépine
DAT		- - -	DITIO	LDES	E ECHANTII LONG ALL ABORA		=				

DATE D'EXPEDITION DES ECHANTILLONS AU LABORATOIRE :

REMARQUES: Cutting étalés dans les espaces verts, piézomètre rebouché après les prélèvements, (sable sur la partie crépinée, bonchon de bentonite sur la partie pleine)

JBRARY V15(FR) GLB FR WELL (FR) C:\USERS\PUBLIC\DOCUMENTS\BENTLEY\GINT\PROJECTS\DREUXWOREX PIEZO GPJ GINT FR 13 GDT 14/06/2018 09:41:32

REMARQUES: Sondage rebouché avec les cuttings

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

PAGE: 1 DE 1

S01

DATE AVANT TROU:

CLIENT: Albioma Le Gol DATE FORAGE: 29/05/18

PROJET: Investigations environnementales sols et eaux souterraines
SITE: 1 Route nationale Le Gol, 97440 Saint Louis
PROFERENCE: 1791429-ALG
PROJET: Investigations environnementales sols et eaux souterraines
FOREUR: Ginger CEBTP
X: (Réf:)
PROJET: Investigations environnementales sols et eaux souterraines
FOREUR: Ginger CEBTP
X: (Réf:)
PROJET: Investigations environnementales sols et eaux souterraines
FOREUR: Ginger CEBTP
X: (Réf:)
PROJET: Investigations environnementales sols et eaux souterraines
FOREUR: Ginger CEBTP
X: (Réf:)
PROJET: Investigations environnementales sols et eaux souterraines
FOREUR: Ginger CEBTP
X: (Réf:)
PROJET: Investigations environnementales sols et eaux souterraines
FOREUR: Ginger CEBTP
X: (Réf:)
PROJET: Investigations environnementales sols et eaux souterraines
FOREUR: Ginger CEBTP
X: (Réf:)
PROJET: Investigations environnementales sols et eaux souterraines
FOREUR: Ginger CEBTP
X: (Réf:)
FOREUR: Ginger CEBTP
X: (Réf:)

L	REF	EF	RENCE:	179142	9-ALG			REVISEU	R: Maureen Herwa	ına ()	Z: (Réf :)
		F	orage		Description Géolo	giqu			Echantillonnage		Equipment
L		EAU	PROFONDEUR (mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
			0,5 - 0,50	× × × × × × × × × × × × × × × × × × ×	Remblai sableux (présence de charbon) Limon brun	Sec	0,1		S01(0-1)		-
20.1.1.00 0.00.00.00.00.00.00.00.00.00.00.00.0	I aliere ø oo mili		1,5—	x x x x x x x x x x x x x x x x x x x		Humide	0,0	RAS	S01(1-2)		- - - - - - -
			2,5—	× × × × × × × × × × × × × × × × × × ×		五	0,1		S01(2-3)		
			3,5—		Arrêt du sondage à 3,00 m						- - - - - - - - - - -
BOART VIS(FK), SED FR WELL (FK) C. LOSENSIF.	ATE	E D'	4,5— 5,0— 5,0— 01/06/201	ON DES	S ECHANTILLONS AU LABORA ption :04/06/2018	TOIR	E:				

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

DATE AVANT TROU:

PAGE: 1 DE 1

S02

GAP gINT FN.

Albioma Le Gol CLIENT:

DATE FORAGE: 29/05/18

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP 1 Route nationale Le Gol, 97440 Saint Louis

INGENIEUR: Sébastien Bardet

X: (Réf:)

SITE: REFERENCE: 1791429-ALG

REMARQUES: Sondage rebouché avec les cuttings

REVISEUR: Maureen Herwana ()

Y: (Réf:) Z: (Réf:)

11	<u> </u>	RENCE:	179142	9-ALG			REVISEUR	R: Maureen Herwa	ına () Z: (Réf :)
	F	orage		Description Géolo	giqu			Echantillonnage		Equipment
METHODE	EAU	PROFONDEUR (mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
		0,5		Sable noir + particules de charbon		0,1		S02(0-1)		
Tarière ø 66 mm		1,0—			Sec	0,2		S02(1-2)		
		2,5—		Arrêt du sondage à 3,00 m SECHANTILLONS AU LABORAT ption :04/06/2018 ebouché avec les cuttings		0,1	RAS	S02(2-3)		
		3,0		Arrêt du sondage à 3,00 m						
		4,0—								
		4,5—								
ATE	E D'	5,0— EXPEDITION	ON DES	S ECHANTILLONS AU LABORAT	FOIR	 E:				

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

PAGE: 1 DE 1

S03-Pz2

DATE AVANT TROU:

Albioma Le Gol **DATE FORAGE: 31/05/18**

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP X: (Réf:) 1 Route nationale Le Gol, 97440 Saint Louis INGENIEUR: Sébastien Bardet SITE: Y: (Réf:)

	Forage)		Description Géo	logiqu	е		Echantillonnage		Equipment
METHODE		(mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
	0,0	0,20	× *	Enrobé Limon sableux grisâtre et noirâtre	s	0,1		S03(0-1)		
	1,0-		× × × × × × × × × × × × × × × × × × ×	Sable limoneux noirâtre						
lariere ø 66 mm	2,0-	_ - - - -	× × × × × × × × × × × × × × × × × × ×		Sec	0,2	RAS	S03(1-2)		
	2,5-	_ - - - - -	× × × × × × × × × × × × × × × × × × ×			0,3		S03(2-3)		
	3,0	3,00	×	Arrêt du sondage à 3,00 m						
	3,5-	- - - - -								
	4,5-	_ - - - - -		S ECHANTILLONS AU LABORA ption :04/06/2018 I d'un piézomètre au droit du son						
	5,0-	- - - - - -								

REMARQUES: Sondage rebouché avec les cuttings

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

PAGE: 1 DE 1

CLIENT: Albioma Le Gol

DATE FORAGE: 30/05/18

DATE AVANT TROU:

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP INGENIEUR: Sébastien Bardet SITE: 1 Route nationale Le Gol, 97440 Saint Louis

X: (Réf:) Y: (Réf:)

S04

GAP gINT FN.

	F	orage		ļ.,	Description Géo	logique		1	Echantillonnage	•	Equipment
1	EAU	PROFONDEUR	(mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
		-0,0 -			Enrobé						
		-	0,20	×	Limon sableux noirâtre						
		-	_	× × ×							
		0,5—		× .			0,7		S04(0-1)		
		-		× *					(,		
			0,80	* × •							
		-	4.00	000	Passage de blocs durs						
		1,0—	1,00	× •×	Limon sableux noirâtre avec bloc	s					
		-		××							
шш		-		× × ×							
Tarière ø 66 mm		1,5—		××		Sec	0,2		S04(1-2)		
arière		-		××		0					
_		-		××							
				××							
		2,0—	2,00	×	Sable limoneux noirâtre avec			RAS			
				×	brun						
		-		×							
		2.5—		×			0,1		S04(2-3)		
		-		×					()		
				×							
		-		×							
		3,0	3,00	^.	Arrêt du sondage à 3,00 m						
		-									
		-									
		3,5—									
		-									
		-			Sable limoneux noirâtre avec quelques passages + limoneux brun Arrêt du sondage à 3,00 m Arrêt du sondage à 3,00 m						
		4,0—									
		-	-								
		4,5—									
		-									
		-									
		5,0—									
										1	

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

DATE AVANT TROU:

S05

PAGE: 1 DE 1

Albioma Le Gol DATE FORAGE: 30/05/18 CLIENT:

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP X: (Réf:) INGENIEUR: Sébastien Bardet SITE: 1 Route nationale Le Gol, 97440 Saint Louis Y: (Réf:)

	Forage			Description Géo	logiqu			Echantillonnage		Equipment
EAU	PROFONDEUR	(mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
	0,0 - - - - 0,5 - -	0,20		Enrobé Remblai de sable gris noirâtre légèrement limoneux		0,0		S05(0-1)		
ימופופ פּ סס ווווו	1,0— - - - - 1,5—	1,00		Remblai de sable gris noirâtre légèrement limoneux avec blocs	Sec	0,1		505(4.2)		
	2,0—	2,20	000	Passage de blocs durs ou		0,0	RAS	\$05(1-2) \$05(2-2,5)		
	- - 2,5 - -	2,50	0000	fondation				550(2 2,5)		
	3,0									
	3,5—									
	- 4,0 - -									
	4,5— - -									
	5,0—			S ECHANTILLONS AU LABOR, ption :04/06/2018						

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

PAGE: 1 DE 1

S06

DATE AVANT TROU:

Albioma Le Gol DATE FORAGE: 30/05/18

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP X: (Réf:) INGENIEUR: Sébastien Bardet SITE: 1 Route nationale Le Gol, 97440 Saint Louis Y: (Réf:) REFERENCE: 1791429-ALG REVISEUR: Maureen Herwana ()

			9-ALG			REVISEO	R: Maureen Herwa	aiia ()	Z: (Réf :)
F	Forage		Description Géo	ologiqu			Echantillonnage	•	Equipment
METHODE	PROFONDEUR (mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
	0,5		Enrobé Remblai de sable noirâtre et gris avec présence de blocs, passage dur		0,1		S06(0-1)		
l ariere ø bo mm	1,0 — — — — — — — 1,5 —	× × × × × × × × × × × × × × × × × × ×	Sable légèrement limoneux, noir présence de charbon	Sec	0,0		S06(1-2)		
	2,5—	× · · · × · · · · · · · · · · · · · · ·	Arrêt du sondage à 3,00 m ECHANTILLONS AU LABOR ption :04/06/2018		0,0	RAS	S06(2-3)		
	3,0 3,6	00 *	Arrêt du sondage à 3,00 m						
	4,0—								
	4,5—								

Albioma Le Gol

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

DATE AVANT TROU:

S07

PAGE: 1 DE 1

DATE FORAGE: 01/06/18

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP

X: (Réf:) SITE: 1 Route nationale Le Gol, 97440 Saint Louis INGENIEUR: Sébastien Bardet Y: (Réf:) REFERENCE: 1791429-ALG REVISEUR: Maureen Herwana () Z: (Réf :)

	Forage			Description Géolo	giqu	e		Echantillonnage	,	Equipment
METHODE	PROFONDEUR	(mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
	0,0	0,20		Enrobé Remblai de sable, cailloux et blocs	Sec	0,1		S07(0-1)		
	1,0—	-	× × × × × × × × × × × × × × × × × × ×	Sable légèrement limoneux noir		0,1		S07(1-2)		
Tarière ø 66 mm	2,5—	2,50	× × × × × × × × × × × × × × × × × × ×	Passage dur, blocs et galets	ide	0,0		S07(2-3)		
	3,0—		x	Passage dur, blocs et galets Sable légèrement limoneux Arrêt du sondage à 5,00 m ECHANTILLONS AU LABORA	Hum	0,0	RAS	S07(3-4)		
	4,5—	500	X			0,0		S07(4-5)		
	5,0 -	5,00	×	Arrêt du sondage à 5,00 m						

Envois: 01/06/2018 Réception: 04/06/2018

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

PAGE: 1 DE 1

S08

DATE AVANT TROU: Albioma Le Gol DATE FORAGE: 01/06/18

CLIENT: PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP

X: (Réf:) INGENIEUR: Sébastien Bardet SITE: 1 Route nationale Le Gol, 97440 Saint Louis Y: (Réf:) REFERENCE: 1791429-ALG REVISEUR: Maureen Herwana ()

REFE	ERENCE	: 179	91429	9-ALG			REVISEUI	R: Maureen Herwa	ana ()	Z: (Réf :)
	Forage			Description Géole	ogique			Echantillonnage	•	Equipment
METHODE		(mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
	0,5 —	0,20	× · · · · · · · · · · · · · · · · · · ·	Remblai de cailloux Sable limoneux noirâtre gris	36	0,0		S08(0-1)		
	1,5—		× × × × × × × × × × × × × × × × × × ×		Sec	0,0		S08(1-2)		
Tarière ø 66 mm	2,0—		× · · · · · · · · · · · · · · · · · · ·			0,0		S08(2-3)		
	3,0—		x	Arrêt du sondage à 5,00 m	Humide	0,0	RAS	S08(3-4)		
	4,0—	5.00	× × × × × × × × × × × × × × × × × × ×			0,1		S08(4-5)		
	5,0	5,00	×	Arrêt du sondage à 5,00 m						

Envois: 01/06/2018 Réception: 04/06/2018

Albioma Le Gol

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

DATE AVANT TROU:

S09

PAGE: 1 DE 1

X: (Réf:)

DATE FORAGE: 29/05/18

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP
SITE: 1 Route nationale Le Gol, 97440 Saint Louis INGENIEUR: Sébastien Bardet

SITE: 1 Route nationale Le Gol, 97440 Saint Louis INGENIEUR: Sébastien Bardet Y: (Réf :)
REFERENCE: 1791429-ALG REVISEUR: Maureen Herwana () Z: (Réf :)

RE	F	orage		9142	Description Géolo	ninu	<u> </u>		R: Maureen Herwa		Z: (Réf :) Equipment
METHODE	EAU	PROFONDEUR	(mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	J (E)	OBSERVATION ORGANOLEPTIQUE		LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
		0,0 - - - 0,5 - - -	0,80	0,50	Remblai de limon noirâtre Limon brun légèrement sableux		0,1		S09(0-1)		
		1,0— 1,5—				Sec	0,1		S09(1-2)		
Tarière ø 66 mm		2,0 —	2,00	O O O O O O O O O O O O O O O O O O O	Sable limoneux brun, noirâtre et cailloutis		0,0		S09(2-3)		
		3,0— 3,5—		× × × × × × × × × × × × × × × × × × ×	Sable limoneux brun, noirâtre et cailloutis Arrêt du sondage à 5,00 m	Humide	0,1	RAS	S09(3-4)		
		4,0 —	500	× × × × × × × × × × × × × × × × × × ×			0,1		S09(4-5)		
		5,0	5,00		Arrêt du sondage à 5,00 m						

Envois: 01/06/2018 Réception: 04/06/2018

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

PAGE: 1 DE 1

S10

DATE AVANT TROU: **DATE FORAGE: 31/05/18**

Albioma Le Gol

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP X: (Réf:) SITE: 1 Route nationale Le Gol, 97440 Saint Louis INGENIEUR: Sébastien Bardet Y: (Réf:) REFERENCE: 1791429-ALG REVISEUR: Maureen Herwana () Z: (Réf:)

0.20 1,00 X X X X X X X X X X X X X X X X X X	Enrobé Remblai de limon sableux noir, présence de débris divers (bois, blocs) Sable limoneux, noirâtre gris	Sec Humidité	.o .o .valeur	OBSERVATION ORGANOLEPTIQUE	S10(0-1)	LICALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
1,00	Remblai de limon sableux noir, présence de débris divers (bois, blocs)	Sec					
	Sable limoneux, noirâtre gris		0,0		S10(1-2)		
× · · · · · · · · · · · · · · · · · · ·							
× · · · × · · · · · · · · · · · · · · ·			0,0		S10(2-3)		
× · · · · · · · · · · · · · · · · · · ·		Humide	0,0	RAS	S10(3-4)		
*			0,0		S10(4-5)		
ıT	ION DE	Arrêt du sondage à 5,00 m ION DES ECHANTILLONS AU LABOR/ 18 Réception :04/06/2018	Arrêt du sondage à 5,00 m	0,0 Arrêt du sondage à 5,00 m ION DES ECHANTILLONS AU LABORATOIRE :	O,0	0,0 S10(4-5) Arrêt du sondage à 5,00 m ION DES ECHANTILLONS AU LABORATOIRE :	O,0 S10(4-5) O,0 S10(4-5) O,0 S10(4-5) O,0 O

REFERENCE:

Albioma Le Gol

1791429-ALG

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

DATE AVANT TROU:

DATE FORAGE: 31/05/18

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP 1 Route nationale Le Gol, 97440 Saint Louis SITE:

X: (Réf:) INGENIEUR: Sébastien Bardet Y: (Réf:)

S11

PAGE: 1 DE 1

REVISEUR: Maureen Herwana () Z: (Réf :)

		•			Build of				. Wadreel Herwa		
	F	orage		7	Description Géolo	giqu			Echantillonnage	• 	Equipment
METHODE	EAU	PROFONDEUR	(mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE	ECHANTILLON	LOCALISATION ECHANTILLON	Tube: Bouchon: Capot: Cadenas:
		0,0 - - - 0,5— - -	1,00	× × × × × × × × × × × × × × × × × × ×	Limon sableux fin brun, présence de cailloux		0,0		S11(0-1)		
00:4::00		1,0— 1,5—		× × × × × × × × × × × × × × × × × × ×	Sable légèrement limoneux noir, présence de cailloux		0,0		S11(1-2)		
Tarière ø 66 mm		2,0		× × × × × × × × × × × × × × × × × × ×		Sec	0,0		S11(2-3)		
		3,0—		× × × × × × × × × × × × × × × × × × ×			0,0	RAS	S11(3-4)		
ANT TOUR TO THE CATA COLORENCE DESCRIPTION OF THE COLORENCE THE COLORENCE THE COLOR OF THE COLOR		4,0— 4,5—	500	× × × × × × × × × × × × × × × × × × ×			0,0		S11(4-5)		
		5,0 -	5,00		Arrêt du sondage à 5,00 m						
F.	LE D				 BECHANTILLONS AU LABORA		-	L		\perp _	L

DATE D'EXPEDITION DES ECHANTILLONS AU LABORATOIRE : Envois : 01/06/2018 Réception :04/06/2018

Albioma Le Gol

REMARQUES: Sondage rebouché avec les cuttings

RAPPORT DE FORAGE COUPE GÉOLOGIQUE ET TECHNIQUE

DATE AVANT TROU:

DATE FORAGE: 30/05/18

PROJET: Investigations environnementales sols et eaux souterraines FOREUR: Ginger CEBTP SITE: 1 Route nationale Le Gol, 97440 Saint Louis INGENIEUR: Sébastien Ba

INGENIEUR: Sébastien Bardet
REVISEUR: Maureen Herwana ()

PAGE: 1 DE 1

S12

GAP gINT FN.

Y: (Réf :) Z: (Réf :)

X: (Réf:)

RE		orage	≣: 17	79142 	9-ALG Description Géol	ogique		REVISEU	R: Maureen Herwa		Z: (Réf :) Equipment
METHODE		FONDEUR	(mètres)	REPRESENTATION GRAPHIQUE	DESCRIPTION	Humidité P	Valeur PID (ppm)	OBSERVATION ORGANOLEPTIQUE		LOCALISATION ECHANTILLON	Tube: Bouchon: Capot:
MET	EAU	0,0 - - -	0,20	×	Remblai de cailloux Sable légèrement limoneux noirâtre	I	Δ.			LOCAL	Cadenas:
		0,5—	1,00	× × × × × × × × × × × × × × × × × × ×			0,1		S12(0-1)		
		- - - 1,5—		× × × × × × × × × × × × × × × × × × ×	Limon sableux noirâtre		0,2		S12(1-2)		
Tarière ø 66 mm		2,0— 2,5—		× * × × * × × × × × × × × × × × × × × ×		Sec	0,1		S12(2-3)		
		3,0 —	3,00	× × × × × × × × × × × × × × × × × × ×	Alluvions de sable, galets et blocs noirâtre et gris Arrêt du sondage à 5,00 m ECHANTILLONS AU LABORA ption :04/06/2018 ebouché avec les cuttings		0,2	RAS	S12(3-4)		
		4,0 —		x			0,1		S12(4-5)		
AT		5,0 -	5,00	*.	Arrêt du sondage à 5,00 m						

APPENDIX E

Fiches de prélèvements – sols de surface

FORMULAIRE C2.3

PRELEVEMENT DES SOLS DE SURFACE

N° projet : 1791429 Point d'observation: PS1

Identification du projet: ALBIOMA LE GOL Coordonnées : Χ: Ouvrage non géoréférencé 30/05/2018 Heure: 16h30

Intervenant(s) terrain: SBA Conditions météo : Beau temps

Photo: Oui Température : Prélèvement de doublons: 30°C Non

DESCRIPTIF DU POINT DE PRELEVEMENT

Relief : Pente douce vers l'océan Pente: environ 2 à 3 % Altitude: environ 17 mNGF Erosion: oui, sol erodé

Utlisation actuelle & passée du sol: Agriculture,

culture de la canne à sucre

Geologie du site: Limons sableux

Hydrologie: Pas de cours d'eau à proximité Granulométrie: Fine, quelques caillous

- environnement général : oui point de prélèvement (vue générale) : oui point de prélèvement vue détaillée : oui
- autre

INFORMATIONS SUR L'ECHANTIL	LON						
Type de préleveur: Tarière ma	nuelle						
Sous échantillons:		1	2	3	4	5	
Profondeur échantillonnée (cm):		0	0	0			
Profondeur echantillonnee (cm):	basse	0,3	0,2	0,3			
Volume échantillonné:		70 ml	70 ml	70 ml			
Description sol:		Lim	non légèrement s	sableux			
Couleur :			Brun				
Odeur (détectable/non détect./aiseme	ent détect.):	Au	cune odeur déte	ectable			
PID:	•	0	0	0			
Humidité:	Sec	Sec	Sec				
Présence racine ou autre:		Racines de	canne à sucre,	débris de tuyau			

ECHANTILL	ON				
Sous échantillon	Nombre de contenant	Volume	Type (verre, plastique)	Couleur (brun, blanc…)	Références (pour échantillon avec codes barres les coller derrière la feuille)
PS1	2	250 ml	Verre	Brun	

Date d'envoi au laboratoire:	01/06/2018	Date de réception au laboratoire:	04/06/2018	
NOTES:				

FORMULAIRE C2.3

PRELEVEMENT DES SOLS DE SURFACE

N° projet : 1791429 Point d'observation: PS2

Identification du projet: ALBIOMA LE GOL Coordonnées : Χ: Ouvrage non géoréférencé 30/05/2018 Heure: 17h00 SBA

Intervenant(s) terrain: Conditions météo : Beau temps Photo: Oui

Température : Prélèvement de doublons: 30°C Non

DESCRIPTIF DU POINT DE PRELEVEMENT

Relief : faible pente vers l'océan

Pente: environ 1 % Altitude: environ 14 mNGF Erosion: faible érosion

Utlisation actuelle & passée du sol: Agriculture,

culture de la canne à sucre

Geologie du site:

Hydrologie: Pas de cours d'eau à proximité

Granulométrie:

Fine

- environnement général : oui point de prélèvement (vue générale) : oui point de prélèvement vue détaillée : oui
- autre

INFORMATIONS SUR L'ECHANTILLON											
Type de préleveur: Tarière ma	Гуре de préleveur: Tarière manuelle										
Sous échantillons:		1	2	3	4	5					
Profondeur échantillonnée (cm):	haute	0	0	0							
Profondeur echantillonnee (cm).	basse	0,3	0,3	0,3							
Volume échantillonné:		70 ml	70 ml	70 ml							
Description sol:		Lim	on légèrement s	sableux							
Couleur :			Brun								
Odeur (détectable/non détect./aisem	ent détect.):	Au	cune odeur déte	ectable							
PID:	•	0	0	0							
Humidité:			Légèrement hun	nide							
Présence racine ou autre:	Racines de canne à sucre										

ECHANTILL	.ON				
Sous échantillon	Nombre de contenant	Volume	Type (verre, plastique)	Couleur (brun, blanc…)	Références (pour échantillon avec codes barres les coller derrière la feuille)
PS2	2	250 ml	Verre	Brun	

Date d'envoi au laboratoire:	01/06/2018	Date de réception au laboratoire:	04/06/2018	
NOTES:				

APPENDIX F

Fiches de prélèvements – Eaux souterraines

EAU SOUTERRAINE PIEZOMETRIE SYNCHRONE

N° projet :	1791429	Identification	du projet:		Albioma Le Gol		
Date:	01/06/2018	Heure de:	7h30	à:	8h		
Intervenant(s) terrain :	SBA						
Conditions météo :	Couvert	Température :	30°C				

A réaliser avant purges et prélèvements

Heure	Ouvrage	Repère	Repère/sol	PID	Prof. interface air/eau ou air/phase	Prof. interface phase/eau	Epaisseur de flottant	Diamètre de l'ouvrage	Profondeur de l'ouvrage	Commentaires
			m	ppm	m/repère	m/repère	m	mm	m/repère	
7h30	PzA	PVC	0,68	0	7,24	n/a	n/a	65	10,35	Ouvrage hors site
7h40	Pz1	PVC	0,36	0	11,7	n/a	n/a	51	15,58	Ouvrage sur site - rebouché
7h50	Pz2	PVC	-0,14	0	10,4	n/a	n/a	51	15,4	Ouvrage sur site - rebouché

\$	GOL	DER	FICI		AU SOUTE JIVI BLAN		ANSP		FORMULAIR	E C1.10
	N° projet :		17	791429		Nom éch	antillon:		Bla	nc
Identificat	ion du projet:			ma Le Gol				_		
		30/05/2018		Heure:	13h30					
_	ant(s) terrain :			SBA						
	itions météo :		Bea	iu temps						
	Température :		;	30°C						
EAU DE REMPL	LISSAGE DU E	BLANC DE TRAI	SPORT							
Туре:		Eau distillée			☐ Eau du rob	vinet		laboratoire	anno par io	
Remarques :		_								
Echantillons en ce blanc	voyés avec	Pz1, Pz2, Pz2-C	et PzA							
		'								
Observations/ Commentaires		RAS								
ECHANTILLON		<u> </u>								
Nombre de	/olume	Type (verre, PE)	Couleur (brun, blanc)	Filtration/ o	conservateurs:	Référe	***	hantillon avec c derrière la feuille	odes barres les coller e)
	Head space									
x1 6	60ml									
1	00ml									
x1 2	250ml									
x1 5	500ml									
1	000ml									
	Autre:									
		au laboratoire:	01/0	06/2018	Date de n	éception au lab	oratoire:	04/0	6/2018	

GA - Octobre 2016

FORMULAIRE C1.1

GA - Septembre 2015

EAU SOUTERRAINE PURGE ET ECHANTILLONNAGE

	N° projet :		1	791429		Doin	ıt d'observ	ration		Pz1	
Identifica	tion du projet:		-	ma Le Gol		_	rdonnées :		X :		25,66
Date:		31/05/2018		Heure:	9h00	=			Y:		128,79
-	ant(s) terrain :			SBA		_			Z:	15,48 mN	GF % PVC
Cond	litions météo :		Bea	au temps		Pho	to:			V	
	Température :			28°C		Prél	èvement d	e doublons:	Non		
DESCRIPTION	DE l'OUVRAG	E									
Cadenas :		Oui			▼ Non	D III] RI	<u> </u>	R (ha	ut tubage/sol) :	0,36 m
Bouchon :	Aucun	posé		vissé	étanche		``	4	D (capo	t/haut tubage):	n/a m
		Oui		***************************************	✓ Non		∇	В			
Ras de terre :									A (R/ni	veau statique) :	10,91 m
Phase libre :		Oui			▽ Non	E	∃::::::::::::		В	(R/fond puits):	15,58 m
									١	Niveau flottant :	n/a m
Position de la z	one crépinée:		de -9 m à -	15 m					N	liveau coulant :	n/a m
									Ç	ø de l'ouvrage :	51 mm
PID ouverture (ppm):						0				
Remarques (tra	aces, saleté, ea	u) :	Traces d							e la tête du piézo ne de prélèveme	
DEVELOPPEN	IENT / PURGE	DE L'OUVRA	GE								,
Equipement uti	lisé :		pompe à i	nertie (waterra)	submers	ible		oompe pérista	Itique		Autre:
Volume de l'ou		V = (B-A)*π*r	2 _	10	litroo	/C: 4					
		V = (B-A) 1111		10	litres	(3) 11	ubage z , n	τ*r2= 2, si tuba	_		
Volume minima	al à purger :		V x 3 =	29	litres			Début :	91	h35 (1)	9h57 (2)
Débit approxim	atif:			6	I/min			Fin:		9h38	9h59
Temps (min)	Volume retiré	Température	рН	Conductiv	ité TDS	6	ORP	O2 dissous		Observati	ione
	(I)	(°C)	·	(uS/cm)	(ppn	1)	(mV)	(mg/l)			
3	18	30	7,1	1445			120	2,46		très trouble - Assè	
2	12	28,98	7,12	1266			115	0,81	Eau	très trouble - Assè	mement du puits
	Stabilisation :	+/- 0,5°C	+/- 0,1	+/- 5%		+/	- 10mV	+/- 0,5mg/l			
		volume purgé:	30	L		Niveau d	vnamigue e	n fin de purge	:	A sec	m
		p9					,				
PRELEVEMEN	IT / ECHANTIL	LONNAGE									
Profondeur du sy	stème de pompa	ge lors du prélè	/ement:	14	m						
	Volume retiré	Température		Conductiv	ité TDS	8	ORP	O2 dissous			
Heure	(I)	(°C)	pH	(uS/cm)			(mV)	(mg/l)		Observati	ons
10h10	2	31	7,05	1115			101	0,25		Eau très tu	rbide
Irisation:		Oui		▼ Non							
Odeur :		Oui		▼ Non		Préc	iser			RAS	
							_				
Turbidité :			Clair	1 1 1	11111	11111	1 1 1 13	XIII	Opaq	ue	
Remarque :							RAS				
ECHANTILLO	N										
Nombre de	Volume	Type (verre, F	PE)	Couleur (brun,	Filtration	/ conservat	eurs: Réf	érences (pour		llon avec codes b	arres les coller
contenants x4		Verre	,	blanc)		Aucun			derrie	ere la feuille)	
^4	Head space	VOITO				Addul					
x5	COI	PE				Aucun					
	60ml										
	100ml										
v1		DE				Augun					
x1	250ml	PE			+	Aucun					
x1	F00!	Verre				Aucun					
	500ml										
	1000ml										
	Autre:	<u> </u>									
	Date d'envoi	au laboratoire:	01/0	06/2018	Date de	réception a	au laboratoi	ire: 04	4/06/20	18	

FORMULAIRE C1.1

GA - Septembre 2015

	N° projet :		1	79142	29		Point d'ok	servation:		Pz2
Identifica	tion du projet:		Albic	ma Le	e Gol		Coordonn	iées :	X :	333643,53
Date:		01/06/2018			Heure:	12h50			Y:	7646021,35
Interven	ant(s) terrain :			SBA					Z :	14,77 mNGF % PVC
Cone	ditions météo :		(Couve	rt		Photo:		-	V
	Température :			30°C			Prélèvem	ent de doublons:	Non	0.00
DESCRIPTION	DE l'OUVRAC	GE								
Cadenas :		Oui			~	Non	D III RI		R (hai	ut tubage/sol): -0,07 m
Bouchon :	Aucun	posé		vissé		étanche 🚃		A	D (canot	/haut tubage) : n/a m
				VISSE				В		
Ras de terre :	~	Oui				Non		<u>(6000</u>	A (R/niv	reau statique) : 10,49 m
Phase libre :		Oui			~	Non		000000 0000000 00000000000000000000000	В	(R/fond puits) : 15,4 m
						6006	5000000000000000000	900000	N	liveau flottant : n/a m
Position de la :	zone crépinée:	de	e -9,4 m à	-15,4 :	m					iveau coulant : n/a m
		-				-			Ø	de l'ouvrage : 51 mm
PID ouverture	(ppm):							0		
Remarques (tr	aces, saleté, ea	ıu) :	Pas de	finitio	ns réalisées a				0	temporaire, il a été détruit le
DEVEL ORDER	MENT / PURGE	DE L'OUVRA	CE.			01/06/201	8 après la ca	mpagne de prélève	ements	
				nort:-	(waterra)	submersible		pompe pérista	Itia	Autre:
Equipement ut				1161116	(waterra)	SUDITIEISIDIE		- pompe perista	ilique	Autre:
Volume de l'ou	vrage :	$V = (B-A)^*\pi^*r$	2 =	_	10	litres	(Si tubage	2", $\pi^*r2=2$, si tuba	age 4" π'	*r2= 8)
Volume minima	al à purger :		V x 3 =	=	30	litres		Début :	1	3h00
Débit approxim	natif ·			6		- I/min		Fin :	1	3h18
Вовіт аррголіп					C	TDS	ORP			·····
Temps (min)	Volume retiré (I)	Température (°C)	рН		Conductivité (uS/cm)	(ppm)	(mV)	O2 dissous (mg/l)		Observations
1	8	24,56	7,1		3376		95	3,32		Eau trouble
3	24	24,81	7,02		3039		99	2,19		Eau plus claire
9	72	25,25	7,05		3511		105	4,76		Eau claire
14	112	25,43	7,12		3404		101	4,67		Eau claire
18	144	25,46	7,1		3391		100	4,66		Eau claire
	Stabilisation :	+/- 0,5°C	+/- 0,1		+/- 5%		+/- 10m	. 0		
	Total du	volume purgé:	144	L	-	Niv	veau dynami	que en fin de purge	:	10,75 m
DDELEVEMEN	NT / ECHANTIL	LONNAGE								
Profondeur du s	stème de pompa		/ement:	_	12	m -				
Heure	Volume retiré (I)	Température (°C)	рН		Conductivité (uS/cm)	TDS (ppm)	ORP (mV)	O2 dissous (mg/l)		Observations
13h20	1	25,9	7,13		3398	(I-1- /	110	4,51		Eau daire
lui 4i		Oui		~	l			I		
Irisation:										
Odeur :		Oui		V	Non		Préciser			RAS
Turbidité :			Clair		IXIII		11111	1111	Opaqu	ie
Remarque :							E	RAS		
Nombre de		<u> </u>		Cont	eur (brun,	I	1	Références (nour	· Áchantil	lon avec codes barres les colle
contenants	Volume	Type (verre, F	PE)	bland		Filtration/ cor	nservateurs:	, tororerioes (pour		re la feuille)
x4+4	Head space	Verre				Aud	cun			
. = . =	-1-200	DE								
x5+5	60ml	PE				Aud	cun			
	100ml									
x1+1	250ml	PE		L		Aud	cun			
-	ZJUIII		-							
x1+1	500ml	Verre				Aud	cun			
	1000ml									
	Autre:									
	Date d'envoi	au laboratoire:	01/	06/20	18	Date de réce	eption au labo	oratoire: 04	4/06/201	18

GA - Septembre 2015

EAU SOUTERRAINE PURGE ET ECHANTILLONNAGE

				FORGE ET	LUITA	NIILLON	INAGL					
	N° projet :		1	791429		Point d'o	bservation:			PzA		
Identifica	tion du projet:		Albio	ma Le Gol		Coordon	nnées :		X :	3338	312,71	
Date:		31/05/2018		Heure:	10h30	_		-	Y:	7645	706,62	
Interven	ant(s) terrain :			SBA		=			Z :	12,94 mN	IGF % P	VC
Cond	ditions météo :			au temps		Photo:				~		
	Température :			30°C		Prélèven	nent de doul	olons:	Non			
	I DE I'OUVRAG			_	_							
Cadenas :		Oui		-	Non	D III R	T T		R (haut	tubage/sol) :	0,68	m
Bouchon :		posé	~	vissé	étanche		<u> </u>		(capot/ha	aut tubage) :	n/a	m
Ras de terre :		Oui		·	Non		₩ E		(R/nivea	u statique) :	7.27	m
		Oui			Non		0000000 0000000 0000000					
Phase libre :		Oui			Non	——————————————————————————————————————	0000000 0000000 0000000		B (R	/fond puits) :	10,35	m
									Niv	eau flottant :	n/a	m
Position de la z	zone crépinée:		Inconnu	le	_				Nive	eau coulant :	n/a	m
									ød	e l'ouvrage :	65	mm
PID ouverture	,						0					
Remarques (tra	aces, saleté, ea	u) :					RAS					
DEVELOPPEN	/IENT / PURGE	DE L'OUVRA	GE									
Equipement uti	lisé :		pompe à i	nertie (waterra)	submersib	ole	pompe	péristalti	que		Autre:	
Volume de l'ou	vrage :	V = (B-A)*π*r	2 =	10	litres	(Si tubag	e 2", π*r2= 2	. si tubag	e 4" π*r2	= 8)		
		(277)		-	_	(10h			
Volume minima	al à purger :		V x 3 =	-	litres		l	Début :				
Débit approxim	natif :			6	I/min			Fin:	10h	145		
Temps (min)	Volume retiré	Température	рН	Conductivité		ORP (m)()		issous		Observa	tions	
1	(I) 8	(°C) 22,8	7,2	(uS/cm) 2146	(ppm)	(mV)		n g/l)),3		Eau légèreme	nt trouble	
2	16	33,06	7,15	2137		230		,11		Eau da		
4	32	23,24	7,12	2131		234		,08		Eau da		
6	50	23,28	7,11	2115		232		,16		Eau cla	iire	
10	81	23,25	7,1	2112		231	(),1		Eau da	iire	
	Stabilisation :	+/- 0,5°C	+/- 0,1	+/- 5%		+/- 10r	mV +/- 0	,5mg/l				
	Total du	volume purgé:	80	L		Niveau dynam	nique en fin d	e purge :		7,35		m
DDELEVEMEN	IT / ECHANTII	LONNACE										
	NT / ECHANTIL											
Profondeur du sy	stème de pompa		ement:	8	m 							
Heure	Volume retiré (I)	Température (°C)	рН	Conductivité (uS/cm)	TDS (ppm)	ORP (mV)		issous ng/l)		Observa	tions	
11h00	2	24,2	7,05	2120	(i-i-)	241		,25	Ea	u claire, quelqu		ules
Irisation:		Oui		▼ Non								
		Oui										
Odeur :		Oui		Non		Préciser				RAS		
Turbidité :			Clair	1.1.1.1	1 1 1 1 1	11111	I I IXI I	I	Opaque			
Remarque :							RAS					
ECHANTII I O	N											
Nombre de				Couleur (brun,	T		Référence	s (pour é	chantillor	n avec codes	barres le	es coller
contenants	Volume	Type (verre, F	'E)	blanc)	Filtration/	conservateurs	:	- (1		la feuille)		
x4	Head space	Verre			,	Aucun						
x5		PE				Aucun						
λ5	60ml	-			+ '	Addan	+					
	100ml											
	TOOMI											
x1	250ml	PE			,	Aucun						
x1		Verre				Aucun						
A I	500ml	V 011 G			† '	taoan						
	1000ml											
	Autre:											
	Date d'envoi	au laboratoire:	01/0	06/2018	Date de r	éception au lal	boratoire:	04/0	06/2018			
		!			•			/-				

APPENDIX G

Résultats analytiques

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie · 40 rue du Ruisseau BP 50705 · 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37 labo@wessling.fr · www.wessling.fr

Laboratoire WESSLING, 40 rue du Ruisseau, 38070 Saint-Quentin-Fallavier Cedex

GOLDER ASSOCIATES Monsieur Sébastien BARDET 31 rue Gorge de Loup 69009 LYON

Rapport d'essai n°: ULY18-010491-1 Commande n°: ULY-06945-18 Interlocuteur: C. Delente +33 474 999 629 Téléphone : eMail: Caroline.Delente@wessling.fr 06.07.2018

Rapport d'essai

Date:

Projet 1791429 BdC 1800608 Ce rapport est une version corrigée. Il annule et remplace le rapport d'essai n°ULY18-009432-1 que nous vous demandons de détruire afin d'éviter toute utilisation malencontreuse.

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai, sous réserve du flaconnage reçu (hors flaconnage Wessling), du respect des conditions de conservation des échantillons jusqu'au laboratoire d'analyses et du temps imparti entre le prélèvement et l'analyse préconisé dans les normes suivies. Les méthodes couvertes par l'accréditation EN ISO 17025 sont marquées d'un A dans le tableau récapitulatif en fin de rapport au niveau des normes. Les résultats obtenus par ces méthodes sont accrédités sauf avis contraire en remarque.

La portée d'accréditation COFRAC n°1-1364 essais est disponible sur www.cofrac.fr pour les résultats accrédités par les laboratoires Wessling de Lyon. Les essais effectués par le laboratoire de Paris sont accrédités par le COFRAC sous le numéro 1-5578.

Les essais effectués par les laboratoires allemands sont accrédités par le DAKKS sous le numéro D-PL-14162-01-00 (www.as.dakks.de). Les essais effectués par le laboratoire hongrois de Budapest sont accrédités par le NAT sous le numéro NAT-1-1398 (www.nat.hu). Les essais effectués par le laboratoire polonais de Krakow sont accrédités par le PCA sous le numéro AB 918 (www.pca.gov.pl). Ce rapport d'essai ne peut-être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING (EN ISO 17025). Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai. La conclusion ne tient pas compte des incertitudes et n'est pas couverte par l'accréditation.

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 06.07.2018

Analyse physique pH MB	86,4 88,3 <0,5 <0,51	6,18 88,1 <0,52	18.06.18
Analyse physique pH	86,4 88,3	88,1	88,4
pH MB Matière sèche % mass MB Paramètres globaux / Indices Somme des C5 mg/kg MS Somme des C6 mg/kg MS Somme des C7 mg/kg MS Somme des C8 mg/kg MS Somme des C8 mg/kg MS Somme des C9 mg/kg MS			
Matière sèche % mass MB Paramètres globaux / Indices Somme des C5 mg/kg MS Somme des C6 mg/kg MS Somme des C7 mg/kg MS Somme des C8 mg/kg MS Somme des C8 mg/kg MS Somme des C9 mg/kg MS			
Paramètres globaux / Indices Somme des C5 mg/kg MS Somme des C6 mg/kg MS Somme des C7 mg/kg MS Somme des C8 mg/kg MS Somme des C9 mg/kg MS			
Somme des C5 mg/kg MS Somme des C6 mg/kg MS Somme des C7 mg/kg MS Somme des C8 mg/kg MS Somme des C9 mg/kg MS	<0,5 <0,51	<0,52	<0,48
Somme des C6 mg/kg MS Somme des C7 mg/kg MS Somme des C8 mg/kg MS Somme des C9 mg/kg MS	<0,5 <0,51	<0,52	<0,48
Somme des C7 mg/kg MS Somme des C8 mg/kg MS Somme des C9 mg/kg MS	<0,5 <0,51	<0,52	<0,48
Somme des C8 mg/kg MS Somme des C9 mg/kg MS	<0,5 <0,51	<0,52	<0,48
Somme des C9 mg/kg MS	<0,5 <0,51	<0,52	<0,48
	<0,5 <0,51	<0,52	<0,48
Somme des C10 mg/kg MS	<0,5 <0,51	<0,52	<0,48
The state of the s	<0,5 <0,51	<0,52	<0,48
Indice hydrocarbure (C5-C10) mg/kg MS	<0,5 <0,51	<0,52	<0,48
9 0			
Indice hydrocarbure C10-C40 mg/kg MS			
Hydrocarbures > C10-C12 mg/kg MS			
Hydrocarbures > C12-C16 mg/kg MS			
Hydrocarbures > C16-C21 mg/kg MS			
Hydrocarbures > C21-C35 mg/kg MS			
Hydrocarbures > C35-C40 mg/kg MS			
Sulfates (SO4) calc. mg/kg MS-A	630 630	280	330
Soufre (S) mg/kg MS-A	210 210	92	110
Métaux lourds			
Eléments			
Sodium (Na) mg/kg MS			
Chrome (Cr) mg/kg MS	60 73	32	31
Nickel (Ni) mg/kg MS	140 120	87	88
Cuivre (Cu) mg/kg MS	36 37	30	33
Zinc (Zn) mg/kg MS	110 140	100	110
Arsenic (As) mg/kg MS	2,0 2,0	<2,0	2,0
- (-)	<0,5	<0,5	<0,5
Mercure (Hg) mg/kg MS	<0,1 <0,1	<0,1	<0,1
Plomb (Pb) mg/kg MS	10 <10	<10	16
Benzène et aromatiques (CAV - BTEX)			
Benzène mg/kg MS			
Toluène mg/kg MS			
Ethylbenzène mg/kg MS			
m-, p-Xylène mg/kg MS			
o-Xylène mg/kg MS			
Cumène mg/kg MS			
m-, p-Ethyltoluène mg/kg MS			
Mésitylène mg/kg MS			
o-Ethyltoluène mg/kg MS			
Pseudocumène mg/kg MS			
Somme des CAV mg/kg MS			

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

Désignation d'échantillon	Unité	18-093226-01 S01(0-1)	18-093226-03 S01(2-3)	18-093226-04 S02(0-1)	18-093226-09 S02(1-2)
Hydrocarbures aromatiques polycyclique	es (HAP)				
Naphtalène	mg/kg MS	<0.05	<0.05	<0,05	<0.05
Acénaphtylène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Acénaphtène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Fluorène	mg/kg MS	<0.05	<0,05	<0,05	<0,05
Phénanthrène	mg/kg MS	0,069	<0,05	<0,05	<0,05
Anthracène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
-luoranthène	mg/kg MS	0,27	<0,05	<0,05	<0,05
Pyrène	mg/kg MS	0,21	<0,05	<0,05	<0,05
Benzo(a)anthracène	mg/kg MS	0,13	<0,05	<0.05	<0,05
Chrysène	mg/kg MS	0,13	<0,05	<0.05	<0,05
Benzo(b)fluoranthène	mg/kg MS	0,20	<0.05	<0,05	<0,05
Benzo(k)fluoranthène	mg/kg MS	0,081	<0.05	<0.05	<0,05
Benzo(a)pyrène	mg/kg MS	0,10	<0,05	<0,05	<0,05
Dibenzo(ah)anthracène	mg/kg MS	<0,05	<0,05	<0.05	<0,05
Indéno(123-cd)pyrène	mg/kg MS	0,093	<0,05	<0,05	<0,05
	mg/kg MS	0,093	<0,05	<0,05	<0,05
Benzo(ghi)pérylène Somme des HAP	mg/kg MS	1,4	-/-	-/-	-/-
buillille des nar	mg/kg MS	1,4	-/-	-/-	-/-
Préparation d'échantillon					
Minéralisation à l'eau régale	MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation					
Lixiviat	MB				
Sur lixiviat filtré Cations, anions et éléments non métalliq Sulfite (SO3)					
Cations, anions et éléments non métalliq Sulfite (SO3)	jues mg/l E/L				
Cations, anions et éléments non métalliq Sulfite (SO3) Solvants	mg/l E/L				
Cations, anions et éléments non métalliq Sulfite (SO3) Solvants Méthanol	mg/l E/L mg/kg MS				
Cations, anions et éléments non métalliq Sulfite (SO3) Solvants Méthanol Éthanol	mg/l E/L mg/kg MS mg/kg MS				
Cations, anions et éléments non métalliq Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol	mg/l E/L mg/kg MS mg/kg MS mg/kg MS				
Cations, anions et éléments non métalliq Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol ert-Butanol	mg/l E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS				
Cations, anions et éléments non métalliq Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol	mg/l E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS				
Cations, anions et éléments non métalliq Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol	mg/l E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS				
Cations, anions et éléments non métalliq Sulfite (SO3)	mg/l E/L mg/kg MS				
Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol	mg/l E/L mg/kg MS				
Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol	mg/l E/L mg/kg MS				
Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol eert-Butanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol	mg/l E/L mg/kg MS				
Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol eert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol	mg/l E/L mg/kg MS				
Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol 2-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol	mg/l E/L mg/kg MS				
Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol 2-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol	mg/l E/L mg/kg MS				
Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol 2-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Heptanol 1-Heptanol	mg/l E/L mg/kg MS				
Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol	mg/l E/L mg/kg MS				
Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol	mg/l E/L mg/kg MS				
Cations, anions et éléments non métalliques Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol)	mg/l E/L mg/kg MS				

% mass MB

Extrait à l'acide chlorhydrique

Analyse physique

Matière sèche

MS-A

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 06.07.2018

N° d'échantillon Désignation d'échantillon	Unité	18-093226-07 S03(0-1)	18-093226-09 S03(2-3)	18-093226-10 S04(0-1)	18-093226-11 S04(1-2)
Extrait à l'acide chlorhydrique	MS-A	18.06.18	18.06.18	18.06.18	18.06.18
Analyse physique					
pH	MB				
Matière sèche	% mass MB	90,6	92,1	88,0	90,3
Paramètres globaux / Indices					
Somme des C5	mg/kg MS				
Somme des C6	mg/kg MS				
Somme des C7	mg/kg MS				
Somme des C8	mg/kg MS				
Somme des C9	mg/kg MS				
Somme des C10	mg/kg MS				
Indice hydrocarbure (C5-C10)	mg/kg MS	2	2 = :		
Phénol (indice)	mg/kg MS	<0,46	<0,51	<0,56	<0,5
Indice hydrocarbure C10-C40	mg/kg MS				
Hydrocarbures > C10-C12	mg/kg MS				
Hydrocarbures > C12-C16	mg/kg MS				
Hydrocarbures > C16-C21	mg/kg MS				
Hydrocarbures > C21-C35	mg/kg MS				
Hydrocarbures > C35-C40	mg/kg MS			0.50	100
Sulfates (SO4) calc.	mg/kg MS-A	81	66 22	250	120
Soufre (S)	mg/kg MS-A	27	22	85	39
Métaux lourds					
Eléments					
Sodium (Na)	mg/kg MS				
Chrome (Cr)	mg/kg MS	26	22	40	27
Nickel (Ni)	mg/kg MS	81	70	160	80
Cuivre (Cu)	mg/kg MS	26	20	37	22
Zinc (Zn)	mg/kg MS	85	85	83	81
Arsenic (As)	mg/kg MS	<2,0	<2,0	<2,0	<2,0
Cadmium (Cd)	mg/kg MS	<0,5	<0,5	<0,5	<0,5
Mercure (Hg)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Plomb (Pb)	mg/kg MS	<10	<10	<10	<10
Benzène et aromatiques (CAV - BTEX)					
Benzène	mg/kg MS				
Toluène	mg/kg MS				
Ethylbenzène	mg/kg MS				
m-, p-Xylène	mg/kg MS				
o-Xylène	mg/kg MS				
Cumène	mg/kg MS				
m-, p-Ethyltoluène	mg/kg MS				
Mésitylène	mg/kg MS				
o-Ethyltoluène	mg/kg MS				
Pseudocumène	mg/kg MS				
Somme des CAV	mg/kg MS				

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

Hydrocarbures aromatiques polycycliq Naphtalène Acénaphtylène Acénaphtène Fluorène	` ` '				
Acénaphtylène Acénaphtène					
Acénaphtène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
· · · · · · · · · · · · · · · · · · ·	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Huorène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
ludiene	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Phénanthrène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Anthracène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Fluoranthène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Pyrène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(a)anthracène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Chrysène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(b)fluoranthène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(k)fluoranthène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(a)pyrène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Dibenzo(ah)anthracène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Indéno(123-cd)pyrène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(ghi)pérylène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Somme des HAP	mg/kg MS	-/-	-/-	-/-	-/-
Préparation d'échantillon					
	1.10				40/00/0040
Minéralisation à l'eau régale	MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
-	MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3)	МВ	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3)	MB liques	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants	MB liques mg/l E/L	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol	MB liques mg/l E/L mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol	MB liques mg/l E/L mg/kg MS mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol	MB liques mg/l E/L mg/kg MS mg/kg MS mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol	MB liques mg/l E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol iert-Butanol n-Propanol	mg/l E/L mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol ert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol)	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol -ert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol eert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Hexanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métal Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Hexanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

Paramètres globaux / Indices

Somme des C5	mg/kg MS	
Somme des C6	mg/kg MS	
Somme des C7	mg/kg MS	
Somme des C8	mg/kg MS	
Somme des C9	mg/kg MS	
Somme des C10	mg/kg MS	
Indice hydrocarbure (C5-C10)	mg/kg MS	
Phénol (indice)	mg/kg MS	<0,47
Indice hydrocarbure C10-C40	mg/kg MS	
Hydrocarbures > C10-C12	mg/kg MS	
Hydrocarbures > C12-C16	mg/kg MS	
Hydrocarbures > C16-C21	mg/kg MS	
Hydrocarbures > C21-C35	mg/kg MS	
Hydrocarbures > C35-C40	mg/kg MS	
Sulfates (SO4) calc.	mg/kg MS-A	110
Soufre (S)	mg/kg MS-A	38

Eléments

Chrome (Cr)	mg/kg MS	28
Nickel (Ni)	mg/kg MS	82
Cuivre (Cu)	mg/kg MS	22
Zinc (Zn)	mg/kg MS	82
Arsenic (As)	mg/kg MS	<2,0
Cadmium (Cd)	mg/kg MS	<0,5
Mercure (Hg)	mg/kg MS	<0,1
Plomb (Pb)	mg/kg MS	<10

Benzène et aromatiques (CAV - BTEX)

Benzène	mg/kg MS	
Toluène	mg/kg MS	
Ethylbenzène	mg/kg MS	
m-, p-Xylène	mg/kg MS	
o-Xylène	mg/kg MS	
Cumène	mg/kg MS	
m-, p-Ethyltoluène	mg/kg MS	
Mésitylène	mg/kg MS	
o-Ethyltoluène	mg/kg MS	
Pseudocumène	mg/kg MS	
Somme des CAV	mg/kg MS	

Hydrocarbures aromatiques polycycliques (HAP)

Naphtalène	mg/kg MS	<0,05
Acénaphtylène	mg/kg MS	<0,05
Acénaphtène	mg/kg MS	<0,05
Fluorène	mg/kg MS	<0,05
Phénanthrène	mg/kg MS	<0,05
Anthracène	mg/kg MS	<0,05
Fluoranthène	mg/kg MS	<0,05
Pyrène	mg/kg MS	<0,05
Benzo(a)anthracène	mg/kg MS	<0,05
Chrysène	mg/kg MS	<0,05
Benzo(b)fluoranthène	mg/kg MS	<0,05
Benzo(k)fluoranthène	mg/kg MS	<0,05
Benzo(a)pyrène	mg/kg MS	<0,05
Dibenzo(ah)anthracène	mg/kg MS	<0,05
Indéno(123-cd)pyrène	mg/kg MS	<0,05
Benzo(ghi)pérylène	mg/kg MS	<0,05
Somme des HAP	mg/kg MS	-/-

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

N° d'échantillon

18-093226-11-1

S04(4-2)

Désignation d'échantillon Unité S04(1-2)

Préparation d'échantillon

Minéralisation à l'eau régale MS 19/06/2018

Lixiviation

Lixiviat MB

Cations, anions et éléments non métalliques

Sulfite (SO3) mg/l E/L

Solvants

Méthanol mg/kg MS mg/kg MS Éthanol mg/kg MS 2-Propanol tert-Butanol mg/kg MS n-Propanol mg/kg MS 2-Méthyl-1-propanol (isobutanol) mg/kg MS 1-Butanol mg/kg MS 2-(3)-Pentanol mg/kg MS 3-Hexanol mg/kg MS 1-Hexanol mg/kg MS 4-Heptanol mg/kg MS 1-Heptanol mg/kg MS mg/kg MS 1-Octanol 2-Butanol mg/kg MS mg/kg MS 2-Ethyl-1-hexanol

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 06.07.2018

N° d'échantillon Désignation d'échantillon	Unité	18-093226-13 S05(0-1)	18-093226-15 S05(2-3)	18-093226-16 S06(0-1)	18-093226-18 S06(2-3)
Extrait à l'acide chlorhydrique	MS-A	18.06.18	18.06.18	18.06.18	18.06.18
Extrait a racide chlomydrique	WIS-A	10.00.10	10.00.10	10.00.10	10.00.10
Analyse physique					
pH	MB				
Matière sèche	% mass MB	94,1	97,1	88,7	90,7
Paramètres globaux / Indices					
Somme des C5	mg/kg MS				
Somme des C6	mg/kg MS				
Somme des C7	mg/kg MS				
Somme des C8	mg/kg MS				
Somme des C9	mg/kg MS				
Somme des C10	mg/kg MS				
Indice hydrocarbure (C5-C10)	mg/kg MS				
Phénol (indice)	mg/kg MS	<0,51	<0,49	<0,48	<0,48
Indice hydrocarbure C10-C40	mg/kg MS				
Hydrocarbures > C10-C12	mg/kg MS				
Hydrocarbures > C12-C16	mg/kg MS				
Hydrocarbures > C16-C21	mg/kg MS				
Hydrocarbures > C21-C35	mg/kg MS				
Hydrocarbures > C35-C40	mg/kg MS				
Sulfates (SO4) calc.	mg/kg MS-A	60	39	170	110
Soufre (S)	mg/kg MS-A	20	13	56	36
Métaux lourds					
Eléments					
Sodium (Na)	mg/kg MS				
Chrome (Cr)	mg/kg MS	59	38	42	29
Nickel (Ni)	mg/kg MS	280	150	180	93
Cuivre (Cu)	mg/kg MS	47	30	62	27
Zinc (Zn)	mg/kg MS	80	62	83	83
Arsenic (As)	mg/kg MS	<2,0	<2,0	<2,0	<2,0
Cadmium (Cd)	mg/kg MS	<0,5	<0,5	<0,5	<0,5
Mercure (Hg)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Plomb (Pb)	mg/kg MS	<10	<10	11	<10
Benzène et aromatiques (CAV - BTEX)					
Benzène	mg/kg MS				
Toluène	mg/kg MS				
Ethylbenzène	mg/kg MS				
m-, p-Xylène	mg/kg MS				
o-Xylène	mg/kg MS				
Cumène	mg/kg MS				
m-, p-Ethyltoluène	mg/kg MS				
Mésitylène	mg/kg MS				
o-Ethyltoluène	mg/kg MS				
Pseudocumène	mg/kg MS				
Somme des CAV	mg/kg MS				

Analyse physique

Matière sèche

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

Hydrocarbures aromatiques polycycliques Naphtalène			S05(2-3)	S06(0-1)	S06(2-3)
•	s (HAP)				
A / 1.13	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Acénaphtylène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Acénaphtène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
- Fluorène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Phénanthrène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Anthracène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
luoranthène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Pyrène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Benzo(a)anthracène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Chrysène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Benzo(b)fluoranthène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Benzo(k)fluoranthène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Benzo(a)pyrène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Dibenzo(ah)anthracène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
ndéno(123-cd)pyrène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Benzo(ghi)pérylène	mg/kg MS	<0,05	<0,1	<0,05	<0,05
Somme des HAP	mg/kg MS	-/-	-/-	-/-	-/-
Préparation d'échantillon					
	MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale	MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Préparation d'échantillon Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré	МВ	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métalliqu	MB ies	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3)	МВ	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants	MB ies mg/l E/L	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol	MB ies mg/l E/L mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol	MB mg/I E/L mg/kg MS mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol	MB mg/I E/L mg/kg MS mg/kg MS mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol ert-Butanol	mg/l E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol ert-Butanol n-Propanol	mg/l E/L mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Ethanol 2-Propanol ert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol)	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Ethanol 2-Propanol ert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol) I-Butanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Ethanol 2-Propanol ert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Alinéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Ethanol 2-Propanol ert-Butanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Alinéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Ethanol 2-Propanol ert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol ert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) I-Butanol 2-(3)-Pentanol 3-Hexanol I-Hexanol I-Hexanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol ert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Minéralisation à l'eau régale Lixiviation Lixiviat Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol ert-Butanol	mg/kg MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018

% mass MB

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 06.07.2018

N° d'échantillon Désignation d'échantillon	Unité	18-093226-19 S07(0-1)	18-093226-23 S07(4-5)	18-093226-24 \$08(0-1)	18-093226-26 \$08(2-3)
Extrait à l'acide chlorhydrique	MS-A				
Analyse physique					
pH	MB				
Matière sèche	% mass MB	94,9	90,7	93,0	92,0
Paramètres globaux / Indices		- 1,5	,-		,-
Somme des C5	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C6	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C7	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C8	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C9	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C10	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Indice hydrocarbure (C5-C10)	mg/kg MS	<10,0	<10,0	<10,0	<10,0
Phénol (indice)	mg/kg MS	- 7-	-,-	-,-	-,-
Indice hydrocarbure C10-C40	mg/kg MS	320	32	<20	<20
Hydrocarbures > C10-C12	mg/kg MS	<40	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<40	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<40	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	170	<20	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	140	<20	<20	<20
Sulfates (SO4) calc.	mg/kg MS-A				
Soufre (S)	mg/kg MS-A				
Métaux lourds Eléments					
Sodium (Na)	mg/kg MS				
Chrome (Cr)	mg/kg MS				
Nickel (Ni)	mg/kg MS				
Cuivre (Cu)	mg/kg MS				
Zinc (Zn)	mg/kg MS				
Arsenic (As)	mg/kg MS				
Cadmium (Cd)	mg/kg MS				
Mercure (Hg)	mg/kg MS				
Plomb (Pb) Benzène et aromatiques (CAV - BTEX)	mg/kg MS				
Benzène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Toluène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Ethylbenzène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
m-, p-Xylène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
o-Xylène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Cumène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
m-, p-Ethyltoluène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Mésitylène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
o-Ethyltoluène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Pseudocumène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Somme des CAV	mg/kg MS	-/-	-/-	-/-	-/-

Laboratoires WESSLING S.A.R.L.

Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

N° d'échantillon Désignation d'échantillon	Unité	S07(0-1)	S07(4-5)	S08(0-1)	S08(2-3)
Hydrocarbures aromatiques polycyclique	es (HAP)				
Naphtalène	mg/kg MS				
Acénaphtylène	mg/kg MS				
Acénaphtène	mg/kg MS				
Fluorène	mg/kg MS				
Phénanthrène	mg/kg MS				
Anthracène	mg/kg MS				
Fluoranthène	mg/kg MS				
Pyrène	mg/kg MS				
Benzo(a)anthracène	mg/kg MS				
Chrysène	mg/kg MS				
Benzo(b)fluoranthène	mg/kg MS				
Benzo(k)fluoranthène	mg/kg MS				
Benzo(a)pyrène	mg/kg MS				
Dibenzo(ah)anthracène	mg/kg MS				
Indéno(123-cd)pyrène	mg/kg MS				
Benzo(ghi)pérylène	mg/kg MS				<u>-</u>
Somme des HAP	mg/kg MS				
Préparation d'échantillon					
Minéralisation à l'eau régale	MS				
Lixiviation					
_ixiviat	MB				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3)					
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3)	ques				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants	ques mg/l E/L				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol	ques				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol	ques mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol	mg/l E/L mg/kg MS mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol	mg/I E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol	mg/l E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol)	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 4-Heptanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Heptanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol 2-Butanol 2-Ethyl-1-hexanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Octanol 2-Butanol 2-Ethyl-1-hexanol	mg/l E/L mg/kg MS			18-093226-24-1	
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol 2-Ethyl-1-hexanol	mg/kg MS			18-093226-24-1 S08(0-1)	
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol 2-Ethyl-1-hexanol N° d'échantillon Désignation d'échantillon	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol 1-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol 2-Ethyl-1-hexanol M° d'échantillon Désignation d'échantillon Extrait à l'acide chlorhydrique	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallic	mg/kg MS				

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37 labo@wessling.fr · www.wessling.fr

Paramètres globaux / Indices

Somme des C5	mg/kg MS	<1,5
Somme des C6	mg/kg MS	<1,5
Somme des C7	mg/kg MS	<1,5
Somme des C8	mg/kg MS	<1,5
Somme des C9	mg/kg MS	<1,5
Somme des C10	mg/kg MS	<1,5
Indice hydrocarbure (C5-C10)	mg/kg MS	<10,0
Phénol (indice)	mg/kg MS	
Indice hydrocarbure C10-C40	mg/kg MS	<20
Hydrocarbures > C10-C12	mg/kg MS	<20
Hydrocarbures > C12-C16	mg/kg MS	<20
Hydrocarbures > C16-C21	mg/kg MS	<20
Hydrocarbures > C21-C35	mg/kg MS	<20
Hydrocarbures > C35-C40	mg/kg MS	<20
Sulfates (SO4) calc.	mg/kg MS-A	
Soufre (S)	mg/kg MS-A	

Eléments

Chrome (Cr)	mg/kg MS
Nickel (Ni)	mg/kg MS
Cuivre (Cu)	mg/kg MS
Zinc (Zn)	mg/kg MS
Arsenic (As)	mg/kg MS
Cadmium (Cd)	mg/kg MS
Mercure (Hg)	mg/kg MS
Plomb (Pb)	mg/kg MS

Benzène et aromatiques (CAV - BTEX)

Benzène	mg/kg MS	<0,1
Toluène	mg/kg MS	<0,1
Ethylbenzène	mg/kg MS	<0,1
m-, p-Xylène	mg/kg MS	<0,1
o-Xylène	mg/kg MS	<0,1
Cumène	mg/kg MS	<0,1
m-, p-Ethyltoluène	mg/kg MS	<0,1
Mésitylène	mg/kg MS	<0,1
o-Ethyltoluène	mg/kg MS	<0,1
Pseudocumène	mg/kg MS	<0,1
Somme des CAV	mg/kg MS	-/-

Hydrocarbures aromatiques polycycliques (HAP)

Naphtalène	mg/kg MS
Acénaphtylène	mg/kg MS
Acénaphtène	mg/kg MS
Fluorène	mg/kg MS
Phénanthrène	mg/kg MS
Anthracène	mg/kg MS
Fluoranthène	mg/kg MS
Pyrène	mg/kg MS
Benzo(a)anthracène	mg/kg MS
Chrysène	mg/kg MS
Benzo(b)fluoranthène	mg/kg MS
Benzo(k)fluoranthène	mg/kg MS
Benzo(a)pyrène	mg/kg MS
Dibenzo(ah)anthracène	mg/kg MS
Indéno(123-cd)pyrène	mg/kg MS
Benzo(ghi)pérylène	mg/kg MS
Somme des HAP	mg/kg MS

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

N° d'échantillon 18-093226-24-1
Désignation d'échantillon Unité S08(0-1)

Préparation d'échantillon

Minéralisation à l'eau régale MS

Lixiviation

Lixiviat MB

Cations, anions et éléments non métalliques

Sulfite (SO3) mg/l E/L

Solvants

Méthanol mg/kg MS mg/kg MS Éthanol mg/kg MS 2-Propanol tert-Butanol mg/kg MS n-Propanol mg/kg MS 2-Méthyl-1-propanol (isobutanol) mg/kg MS 1-Butanol mg/kg MS 2-(3)-Pentanol mg/kg MS 3-Hexanol mg/kg MS 1-Hexanol mg/kg MS 4-Heptanol mg/kg MS 1-Heptanol mg/kg MS mg/kg MS 1-Octanol 2-Butanol mg/kg MS mg/kg MS 2-Ethyl-1-hexanol

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie · 40 rue du Ruisseau BP 50705 · 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37 $labo@wessling.fr\cdot www.wessling.fr\\$

St Quentin Fallavier, le 06.07.2018

o-Ethyltoluène

Pseudocumène Somme des CAV

N° d'échantillon Désignation d'échantillon	Unité	18-093226-30 S09(1-2)	18-093226-33 S09(4-5)	18-093226-34 S10(0-1)	18-093226-38 S10(4-5)
Extrait à l'acide chlorhydrique	MS-A				
Analyse physique					
pH Matière sèche	MB % mass MB	7,1 à 23,7°C 83.7	6,7 à 23,7°C 80.6	10,6 à 23,6°C 90.1	7,8 à 23,5°C 90.4
Matiere secne	70 IIIass MD	03,1	60,0	90, 1	90,4
Paramètres globaux / Indices					
Somme des C5	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C6	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C7	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C8	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C9	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C10	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Indice hydrocarbure (C5-C10)	mg/kg MS	<10,0	<10,0	<10,0	<10,0
Phénol (indice)	mg/kg MS				
Indice hydrocarbure C10-C40	mg/kg MS	<20	<20	1400	<20
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<100	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<100	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<100	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	700	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	650	<20
Sulfates (SO4) calc.	mg/kg MS-A				
Soufre (S)	mg/kg MS-A				
Métaux lourds					
Eléments					
Sodium (Na)	mg/kg MS				
Chrome (Cr)	mg/kg MS	40	26	44	30
Nickel (Ni)	mg/kg MS	110	80	140	95
Cuivre (Cu)	mg/kg MS	29	26	39	28
Zinc (Zn)	mg/kg MS	110	93	87	91
Arsenic (As)	mg/kg MS	2,0	<2,0	<2,0	<2,0
Cadmium (Cd)	mg/kg MS	<0.5	<0,5	<0,5	<0,5
Mercure (Hg)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Plomb (Pb)	mg/kg MS	11	<10	<10	<10
Benzène et aromatiques (CAV - BTEX)					
	malka MC				
Benzène	mg/kg MS mg/kg MS				
Toluène					
Ethylbenzène	mg/kg MS mg/kg MS				
m-, p-Xylène	mg/kg MS				
o-Xylène Cumène	mg/kg MS				
m-, p-Ethyltoluène	mg/kg MS				
Mésitylène	mg/kg MS				
o-Ethyltoluène	mg/kg MS				

mg/kg MS mg/kg MS

mg/kg MS

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 \cdot Fax +33 (0)4 74 99 96 37 labo@wessling.fr \cdot www.wessling.fr

N° d'échantillon Désignation d'échantillon	Unité	18-093226-30 S09(1-2)	18-093226-33 S09(4-5)	18-093226-34 S10(0-1)	18-093226-38 S10(4-5)
Designation d'échantinon	Office	303(1-2)	303(4-3)	310(0-1)	310(4-3)
Hydrocarbures aromatiques polycycliques (HA	IP)				
Naphtalène	mg/kg MS				
Acénaphtylène	mg/kg MS				
Acénaphtène	mg/kg MS				
Fluorène	mg/kg MS				
Phénanthrène	mg/kg MS				
Anthracène	mg/kg MS				
luoranthène	mg/kg MS				
Pyrène	mg/kg MS				
Benzo(a)anthracène	mg/kg MS				
Chrysène	mg/kg MS				
Benzo(b)fluoranthène	mg/kg MS				
Benzo(k)fluoranthène	mg/kg MS				
Benzo(a)pyrène	mg/kg MS				
Dibenzo(ah)anthracène	mg/kg MS				
ndéno(123-cd)pyrène	mg/kg MS				
Benzo(ghi)pérylène	mg/kg MS				
Somme des HAP	mg/kg MS				
Préparation d'échantillon					
Ainéralisation à l'eau régale	MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
Lixiviation					
Lixiviat	MB	20.06.2018	20.06.2018	20.06.2018	20.06.2018
Sur lixiviat filtré					
Cations, anions et éléments non métalliques					
Sulfite (SO3)	mg/l E/L	<1,0	<1,0	<1,0	<1,0
Sumo (330)	9,. =,=	.,0	.,0	.,0	.,0
Solvants					
Méthanol Méthanol	mg/kg MS	<20	<20	<200	<20
thanol	mg/kg MS	<2,0	<2,0	<20	<2,0
2-Propanol	mg/kg MS	<2,0	<2,0	<20	<2,0
ert-Butanol	mg/kg MS	<2,0	<2,0	<20	<2,0
n-Propanol	mg/kg MS	<2,0	<2,0	<20	<2,0
2-Méthyl-1-propanol (isobutanol)	mg/kg MS	<2,0	<2,0	<20	<2,0
-Butanol	mg/kg MS	<2,0	<2,0	<20	<2,0
2-(3)-Pentanol	mg/kg MS	<2,0	<2,0	<20	<2,0
B-Hexanol	mg/kg MS	<2,0	<2,0	<20	<2,0
-Hexanol	mg/kg MS	<2,0	<2,0	<20	<2,0
-Heptanol	mg/kg MS	<2,0	<2,0	<20	<2,0
l-Heptanol	mg/kg MS	<2,0	<2,0	<20	<2,0
1 1-1		<2,0	<2,0	<20	<2,0
I-Octanol	mg/ka MS	^ 2.0			
I-Octanol 2-Butanol	mg/kg MS mg/kg MS	<2,0	<2,0	<20	<2,0

N° d'échantillon

Désignation d'échantillon Unité

Extrait à l'acide chlorhydrique MS-A

Analyse physique

pH MB
Matière sèche % mass MB

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 \cdot Fax +33 (0)4 74 99 96 37 labo@wessling.fr \cdot www.wessling.fr

St Quentin Fallavier, le 06.07.2018

Pseudocumène

Somme des CAV

N° d'échantillon Désignation d'échantillon	Unité	18-093226-39 S11(0-1)	18-093226-41 S11(2-3)	18-093226-45 S12(1-2)	18-093226-46 S12(2-3)
Extrait à l'acide chlorhydrique	MS-A				
Analyse physique					
рН	MB	7,4 à 23,5°C	7,5 à 23,4°C	7,1 à 23,4°C	7,1 à 23,3°C
Matière sèche	% mass MB	92,8	91,3	87,8	90,4
Paramètres globaux / Indices					
Somme des C5	mg/kg MS	<1,5	<1,5	<1,5	<1.5
Somme des C6	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C7	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C8	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C9	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Somme des C10	mg/kg MS	<1,5	<1,5	<1,5	<1,5
Indice hydrocarbure (C5-C10)	mg/kg MS	<10,0	<10,0	<10,0	<10,0
Phénol (indice)	mg/kg MS	10,0	10,0	10,0	,.
Indice hydrocarbure C10-C40	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20	<20
Sulfates (SO4) calc.	mg/kg MS-A				
Soufre (S)	mg/kg MS-A				
Métaux lourds					
Eléments					
Sodium (Na)	mg/kg MS				
Chrome (Cr)	mg/kg MS	77	30	29	26
Nickel (Ni)	mg/kg MS	240	90	86	84
Cuivre (Cu)	mg/kg MS	54	22	25	23
Zinc (Zn)	mg/kg MS	95	92	94	89
Arsenic (As)	mg/kg MS	<2,0	<2,0	<2,0	<2,0
Cadmium (Cd)	mg/kg MS	<0,5	<0,5	<0,5	<0,5
Mercure (Hg)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Plomb (Pb)	mg/kg MS	<10	<10	<10	<10
Benzène et aromatiques (CAV - BTEX)					
Benzène	mg/kg MS				
Toluène	mg/kg MS				
Ethylbenzène	mg/kg MS				
m-, p-Xylène	mg/kg MS				
o-Xylène	mg/kg MS				
Cumène	mg/kg MS				
m-, p-Ethyltoluène	mg/kg MS				
Mésitylène	mg/kg MS				
o-Ethyltoluène	mg/kg MS				
- Larynoldono	mg/kg MC				

mg/kg MS mg/kg MS

N° d'échantillon

18-093226-41

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

18-093226-45

18-093226-46

nັ d'echant⊪on Désignation d'échantillon	Unité	18-093226-39 S11(0-1)	18-093226-41 S11(2-3)	18-093226-45 S12(1-2)	18-093226-46 S12(2-3)
Designation d'échantillon	Office	311(0-1)	311(2-3)	312(1-2)	312(2-3)
lydrocarbures aromatiques polycycliques (H	AP)				
laphtalène	mg/kg MS				
cénaphtylène	mg/kg MS				
cénaphtène	mg/kg MS				
luorène	mg/kg MS				
Phénanthrène	mg/kg MS				
Anthracène	mg/kg MS				
luoranthène	mg/kg MS				
Pyrène	mg/kg MS				
Benzo(a)anthracène	mg/kg MS				
Chrysène	mg/kg MS				
Benzo(b)fluoranthène	mg/kg MS				
Benzo(k)fluoranthène	mg/kg MS				
Benzo(a)pyrène	mg/kg MS				
Dibenzo(ah)anthracène	mg/kg MS				
ndéno(123-cd)pyrène	mg/kg MS				
Benzo(ghi)pérylène	mg/kg MS				
Somme des HAP	mg/kg MS				
Préparation d'échantillon					
•	MO	10/06/2010	10/06/0040	10/06/0040	10/00/0040
Ainéralisation à l'eau régale	MS	19/06/2018	19/06/2018	19/06/2018	19/06/2018
ixiviation					
ixiviat	MB	20.06.2018	20.06.2018	20.06.2018	20.06.2018
Sulfite (SO3)	mg/l E/L	<1,0	<1,0	<1,0	<1,0
Solvants	ma/ka MS	<20	<20	<20	<20
Méthanol Éthanol	mg/kg MS mg/kg MS	<2,0	<2,0	<2,0	<2,0
P-Propanol	mg/kg MS	<2,0	<2,0	<2,0	<2,0
ert-Butanol	mg/kg MS	<2,0	<2,0		
	ilig/kg ivis	~ 2.0			
Proposal	ma/ka MS	•	,	<2,0	<2,0
	mg/kg MS	<2,0	<2,0	<2,0	<2,0
-Méthyl-1-propanol (isobutanol)	mg/kg MS	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0
-Méthyl-1-propanol (isobutanol) -Butanol	mg/kg MS mg/kg MS	<2,0 <2,0 <2,0	<2,0 <2,0 <2,0	<2,0 <2,0 <2,0	<2,0 <2,0 <2,0
-Méthyl-1-propanol (isobutanol) -Butanol -(3)-Pentanol	mg/kg MS mg/kg MS mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0
-Méthyl-1-propanol (isobutanol) -Butanol -(3)-Pentanol -Hexanol	mg/kg MS mg/kg MS mg/kg MS mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0
R-Méthyl-1-propanol (isobutanol) -Butanol 2-(3)-Pentanol 3-Hexanol -Hexanol	mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
P-Méthyl-1-propanol (isobutanol) -Butanol P-(3)-Pentanol P-Hexanol -Hexanol P-Hexanol P-Heptanol	mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol	mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
P-Méthyl-1-propanol (isobutanol) -Butanol P-(3)-Pentanol P-Hexanol P-Hexanol P-Heptanol P-Heptanol P-Octanol	mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Jeptanol 1-Octanol 2-Rutanol	mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
2-Méthyl-1-propanol (isobutanol) I-Butanol 2-(3)-Pentanol 3-Hexanol I-Hexanol I-Heptanol I-Heptanol	mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
R-Méthyl-1-propanol (isobutanol) -Butanol -(3)-Pentanol -Hexanol -Hexanol -Heptanol -Octanol -Butanol -Ethyl-1-hexanol	mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Getanol 2-Butanol 2-Ethyl-1-hexanol 2-Ethyl-1-hexanol	mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
R-Méthyl-1-propanol (isobutanol) -Butanol -(-(3)-Pentanol -Hexanol -Hexanol -Heptanol -Octanol -Butanol -Ethyl-1-hexanol I° d'échantillon Désignation d'échantillon	mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0
2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Gottanol 2-Butanol	mg/kg MS	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0	<2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0 <2,0

18-093226-39

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

Paramètres globaux / Indices

Somme des C5	mg/kg MS	<1,5
Somme des C6	mg/kg MS	<1,5
Somme des C7	mg/kg MS	<1,5
Somme des C8	mg/kg MS	<1,5
Somme des C9	mg/kg MS	<1,5
Somme des C10	mg/kg MS	<1,5
Indice hydrocarbure (C5-C10)	mg/kg MS	<10,0
Phénol (indice)	mg/kg MS	
Indice hydrocarbure C10-C40	mg/kg MS	<20
Hydrocarbures > C10-C12	mg/kg MS	<20
Hydrocarbures > C12-C16	mg/kg MS	<20
Hydrocarbures > C16-C21	mg/kg MS	<20
Hydrocarbures > C21-C35	mg/kg MS	<20
Hydrocarbures > C35-C40	mg/kg MS	<20
Sulfates (SO4) calc.	mg/kg MS-A	
Soufre (S)	mg/kg MS-A	

Eléments

Chrome (Cr)	mg/kg MS	24
Nickel (Ni)	mg/kg MS	78
Cuivre (Cu)	mg/kg MS	23
Zinc (Zn)	mg/kg MS	88
Arsenic (As)	mg/kg MS	<2,0
Cadmium (Cd)	mg/kg MS	<0,5
Mercure (Hg)	mg/kg MS	<0,1
Plomb (Pb)	mg/kg MS	<10

Benzène et aromatiques (CAV - BTEX)

Benzène	mg/kg MS	
Toluène	mg/kg MS	
Ethylbenzène	mg/kg MS	
m-, p-Xylène	mg/kg MS	
o-Xylène	mg/kg MS	
Cumène	mg/kg MS	
m-, p-Ethyltoluène	mg/kg MS	
Mésitylène	mg/kg MS	
o-Ethyltoluène	mg/kg MS	
Pseudocumène	mg/kg MS	
Somme des CAV	mg/kg MS	

Hydrocarbures aromatiques polycycliques (HAP)

ma/ka MS	
<u> </u>	
mg/kg MS	
	mg/kg MS

2-Ethyl-1-hexanol

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie · 40 rue du Ruisseau BP 50705 · 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37 labo@wessling.fr · www.wessling.fr

N° d'échantillon 18-093226-46-1 Désignation d'échantillon Unité S12(2-3) Préparation d'échantillon MS 19/06/2018 Minéralisation à l'eau régale Lixiviation 20.06.2018 Lixiviat MB Cations, anions et éléments non métalliques <1,0 Sulfite (SO3) mg/I E/L **Solvants** Méthanol mg/kg MS <20 mg/kg MS <2,0 Éthanol mg/kg MS <2,0 2-Propanol tert-Butanol mg/kg MS <2,0 n-Propanol mg/kg MS <2,0 2-Méthyl-1-propanol (isobutanol) mg/kg MS <2,0 1-Butanol mg/kg MS <2,0 <2,0 2-(3)-Pentanol mg/kg MS 3-Hexanol mg/kg MS <2,0 1-Hexanol <2,0 mg/kg MS 4-Heptanol <2,0 mg/kg MS <2,0 1-Heptanol mg/kg MS mg/kg MS <2,0 1-Octanol 2-Butanol mg/kg MS <2,0 mg/kg MS <2,0

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie · 40 rue du Ruisseau BP 50705 · 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37 $labo@wessling.fr\cdot www.wessling.fr\\$

St Quentin Fallavier, le 06.07.2018

N° d'échantillon Désignation d'échantillon	Unité	18-093226-49 PS1	18-093226-50 PS2	18-093226-30 S09(1-2)	18-093226-33 S09(4-5)
Extrait à l'acide chlorhydrique	MS-A				
Analyse physique					
pH	MB				
Matière sèche	% mass MB				
Paramètres globaux / Indices					
Somme des C5	mg/kg MS				
Somme des C6	mg/kg MS				
Somme des C7	mg/kg MS				
Somme des C8	mg/kg MS				
Somme des C9	mg/kg MS				
Somme des C10	mg/kg MS				

mg/kg MS

mg/kg MS

mg/kg MS

mg/kg MS mg/kg MS

mg/kg MS Hydrocarbures > C21-C35 mg/kg MS Hydrocarbures > C35-C40 mg/kg MS Sulfates (SO4) calc. mg/kg MS-A Soufre (S) mg/kg MS-A

Métaux lourds

Phénol (indice)

Indice hydrocarbure (C5-C10)

Indice hydrocarbure C10-C40

Hydrocarbures > C10-C12

Hydrocarbures > C12-C16

Hydrocarbures > C16-C21

Eléments

Sodium (Na)	mg/kg MS			1800	2800
Chrome (Cr)	mg/kg MS	180	370		
Nickel (Ni)	mg/kg MS	160	290		
Cuivre (Cu)	mg/kg MS	69	96		
Zinc (Zn)	mg/kg MS	150	120		
Arsenic (As)	mg/kg MS	3,0	3,0		
Cadmium (Cd)	mg/kg MS	<0,5	<0,5		
Mercure (Hg)	mg/kg MS	<0,1	<0,1		
Plomb (Pb)	mg/kg MS	27	<10		

Benzène et aromatiques (CAV - BTEX)

. `	,	
Benzène	mg/kg MS	
Toluène	mg/kg MS	
Ethylbenzène	mg/kg MS	
m-, p-Xylène	mg/kg MS	
o-Xylène	mg/kg MS	
Cumène	mg/kg MS	
m-, p-Ethyltoluène	mg/kg MS	
Mésitylène	mg/kg MS	
o-Ethyltoluène	mg/kg MS	
Pseudocumène	mg/kg MS	
Somme des CAV	mg/kg MS	

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

N° d'échantillon Désignation d'échantillon	Unité	PS1	PS2	S09(1-2)	S09(4-5)
Hydrocarbures aromatiques polycycliques	s (HAP)				
Naphtalène	mg/kg MS				
Acénaphtylène	mg/kg MS				
Acénaphtène	mg/kg MS				
Fluorène	mg/kg MS				
Phénanthrène	mg/kg MS				
Anthracène	mg/kg MS				
Fluoranthène	mg/kg MS				
Pyrène	mg/kg MS				
Benzo(a)anthracène	mg/kg MS				
Chrysène	mg/kg MS				
Benzo(b)fluoranthène	mg/kg MS				
Benzo(k)fluoranthène	mg/kg MS				
Benzo(a)pyrène	mg/kg MS				
Dibenzo(ah)anthracène	mg/kg MS				
Indéno(123-cd)pyrène	mg/kg MS				
Benzo(ghi)pérylène	mg/kg MS				
Somme des HAP	mg/kg MS				
Préparation d'échantillon		10/00/22 : 2	4040015515		
Minéralisation à l'eau régale	MS	19/06/2018	19/06/2018		
Lixiviation					
Lixiviat Sur lixiviat filtré Cations, anions et éléments non métalliqu					
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3)					
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants	ues mg/l E/L				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol	ues mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol	mg/l E/L mg/kg MS mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol	mg/l E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol	mg/l E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol	mg/I E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol)	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol)	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 4-Heptanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 4-Heptanol 1-Heptanol 1-Heptanol 1-Octanol	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 4-Heptanol 1-Heptanol 1-Heptanol 1-Octanol	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol 2-Butanol 2-Cathyl-1-hexanol	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Getanol 2-Butanol 2-Butanol 2-Butanol 2-Butanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Heptanol 1-Octanol 2-Butanol	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Getanol 2-Butanol 2-Butanol 2-Butanol 2-Butanol	mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métalliqu Sulfite (SO3) Solvants Méthanol Éthanol 22-Propanol tert-Butanol n-Propanol 22-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Octanol 2-Butanol 2-Ethyl-1-hexanol M° d'échantillon Désignation d'échantillon Extrait à l'acide chlorhydrique	mg/l E/L mg/kg MS				
Sur lixiviat filtré Cations, anions et éléments non métallique Sulfite (SO3) Solvants Méthanol Éthanol 2-Propanol tert-Butanol n-Propanol 2-Méthyl-1-propanol (isobutanol) 1-Butanol 2-(3)-Pentanol 3-Hexanol 1-Hexanol 1-Heptanol 1-Heptanol 1-Cotanol 2-Butanol 2-Butanol 2-Ethyl-1-hexanol N° d'échantillon Désignation d'échantillon	mg/l E/L mg/kg MS				

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 06.07.2018

N° d'échantillon		18-093226-34	18-093226-38	18-093226-39	18-093226-41
Désignation d'échantillon	Unité	S10(0-1)	S10(4-5)	S11(0-1)	S11(2-3)

Extrait à l'acide chlorhydrique MS-A

Analyse physique

pH	MB	
Matière sèche	% mass MB	

Paramètres globaux / Indices

Parametres globaux / indices		
Somme des C5	mg/kg MS	
Somme des C6	mg/kg MS	
Somme des C7	mg/kg MS	
Somme des C8	mg/kg MS	
Somme des C9	mg/kg MS	
Somme des C10	mg/kg MS	
Indice hydrocarbure (C5-C10)	mg/kg MS	
Phénol (indice)	mg/kg MS	
Indice hydrocarbure C10-C40	mg/kg MS	
Hydrocarbures > C10-C12	mg/kg MS	
Hydrocarbures > C12-C16	mg/kg MS	
Hydrocarbures > C16-C21	mg/kg MS	
Hydrocarbures > C21-C35	mg/kg MS	
Hydrocarbures > C35-C40	mg/kg MS	
Sulfates (SO4) calc.	mg/kg MS-A	
Soufre (S)	mg/kg MS-A	

Métaux lourds

Eléments

Sodium (Na)	mg/kg MS	3400	2700	2600	3400
Chrome (Cr)	mg/kg MS				
Nickel (Ni)	mg/kg MS				
Cuivre (Cu)	mg/kg MS				
Zinc (Zn)	mg/kg MS				
Arsenic (As)	mg/kg MS				
Cadmium (Cd)	mg/kg MS				
Mercure (Hg)	mg/kg MS				
Plomb (Pb)	mg/kg MS				

Benzène et aromatiques (CAV - BTEX)

Benzène	mg/kg MS
Toluène	mg/kg MS
Ethylbenzène	mg/kg MS
m-, p-Xylène	mg/kg MS
o-Xylène	mg/kg MS
Cumène	mg/kg MS
m-, p-Ethyltoluène	mg/kg MS
Mésitylène	mg/kg MS
o-Ethyltoluène	mg/kg MS
Pseudocumène	mg/kg MS
Somme des CAV	mg/kg MS

Matière sèche

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie · 40 rue du Ruisseau BP 50705 · 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37 $labo@wessling.fr\cdot www.wessling.fr\\$

mg/kg MS	MS M	0(0-1) 510	0(4-5)	S11(0-1)	S11(2-3)
mg/kg MS	MS M				
mg/kg MS	MS M				
mg/kg MS	MS M				
mg/kg MS	MS M				
mg/kg MS	MS M				
mg/kg MS	MS M				
mg/kg MS MS	MS M				
mg/kg MS	MS M				
mg/kg MS	MS M				
mg/kg MS MS MB MB MB MB MB MB MB MB	MS M				
mg/kg MS MS MS MS MB MB MB MB MB MB MB	MS				
mg/kg MS MS MS MS MB MB MB MB MB MB MB	MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS MS MS MS MB wtalliques mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	MS MS MS MS S B E/L MS MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS MS MS MB stalliques mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	MS MS MS S B E/L MS MS				
mg/kg MS mg/kg MS mg/kg MS MS MS MB stalliques mg/k E/L mg/kg MS mg/kg MS mg/kg MS	MS MS S B E/L MS MS				
mg/kg MS mg/kg MS MS MB stalliques mg/k E/L mg/kg MS mg/kg MS mg/kg MS	MS MS B E/L MS MS				
mg/kg MS MS MB stalliques mg/l E/L mg/kg MS mg/kg MS mg/kg MS	MS E/L MS MS				
MS MB Maliques mg/I E/L mg/kg MS mg/kg MS mg/kg MS mg/kg MS	S B E/L MS MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	B E/L MS MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	B E/L MS MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS	E/L MS MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS	E/L MS MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS	E/L MS MS				
mg/kg MS mg/kg MS	MS				
mg/kg MS mg/kg MS	MS				
mg/kg MS					
	MS				
mg/kg IVIS	NAO				
mg/kg MS	MS				
mg/kg MS mg/kg MS	MS MS				
mg/kg MS mg/kg MS mg/kg MS	MS MS MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS	MS MS MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	MS MS MS MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS	MS MS MS MS MS MS MS				
mg/kg MS mg/kg MS mg/kg MS mg/kg MS	MS MS				

% mass MB

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 06.07.2018

 N° d'échantillon
 18-093226-45
 18-093226-46

 Désignation d'échantillon
 Unité
 \$12(1-2)
 \$12(2-3)

Extrait à l'acide chlorhydrique MS-A

Analyse physique

pH	MB	
Matière sèche	% mass MB	

Paramètres globaux / Indices

Parametres globaux / indices		
Somme des C5	mg/kg MS	
Somme des C6	mg/kg MS	
Somme des C7	mg/kg MS	
Somme des C8	mg/kg MS	
Somme des C9	mg/kg MS	
Somme des C10	mg/kg MS	
Indice hydrocarbure (C5-C10)	mg/kg MS	
Phénol (indice)	mg/kg MS	
Indice hydrocarbure C10-C40	mg/kg MS	
Hydrocarbures > C10-C12	mg/kg MS	
Hydrocarbures > C12-C16	mg/kg MS	
Hydrocarbures > C16-C21	mg/kg MS	
Hydrocarbures > C21-C35	mg/kg MS	
Hydrocarbures > C35-C40	mg/kg MS	
Sulfates (SO4) calc.	mg/kg MS-A	
Soufre (S)	mg/kg MS-A	

Métaux lourds

Eléments

Sodium (Na)	mg/kg MS	2400	2900	
Chrome (Cr)	mg/kg MS			
Nickel (Ni)	mg/kg MS			
Cuivre (Cu)	mg/kg MS			
Zinc (Zn)	mg/kg MS			
Arsenic (As)	mg/kg MS			
Cadmium (Cd)	mg/kg MS			
Mercure (Hg)	mg/kg MS			
Plomb (Pb)	mg/kg MS			

Benzène et aromatiques (CAV - BTEX)

• •	,	
Benzène	mg/kg MS	
Toluène	mg/kg MS	
Ethylbenzène	mg/kg MS	
m-, p-Xylène	mg/kg MS	
o-Xylène	mg/kg MS	
Cumène	mg/kg MS	
m-, p-Ethyltoluène	mg/kg MS	
Mésitylène	mg/kg MS	
o-Ethyltoluène	mg/kg MS	
Pseudocumène	mg/kg MS	
Somme des CAV	mg/kg MS	

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 \cdot Fax +33 (0)4 74 99 96 37 labo@wessling.fr \cdot www.wessling.fr

 N° d'échantillon
 18-093226-45
 18-093226-46

 Désignation d'échantillon
 Unité
 \$12(1-2)
 \$12(2-3)

Hydrocarbures aromatiques polycycliques (HAP)

Naphtalène	mg/kg MS	
Acénaphtylène	mg/kg MS	
Acénaphtène	mg/kg MS	
Fluorène	mg/kg MS	
Phénanthrène	mg/kg MS	
Anthracène	mg/kg MS	
Fluoranthène	mg/kg MS	
Pyrène	mg/kg MS	
Benzo(a)anthracène	mg/kg MS	
Chrysène	mg/kg MS	
Benzo(b)fluoranthène	mg/kg MS	
Benzo(k)fluoranthène	mg/kg MS	
Benzo(a)pyrène	mg/kg MS	
Dibenzo(ah)anthracène	mg/kg MS	
Indéno(123-cd)pyrène	mg/kg MS	
Benzo(ghi)pérylène	mg/kg MS	
Somme des HAP	mg/kg MS	

Préparation d'échantillon

Minéralisation à l'eau régale MS

Lixiviation

Lixiviat MB

Sur lixiviat filtré

Cations, anions et éléments non métalliques

Sulfite (SO3) mg/l E/L

Solvants

Méthanol	mg/kg MS
Éthanol	mg/kg MS
2-Propanol	mg/kg MS
tert-Butanol	mg/kg MS
n-Propanol	mg/kg MS
2-Méthyl-1-propanol (isobutanol)	mg/kg MS
1-Butanol	mg/kg MS
2-(3)-Pentanol	mg/kg MS
3-Hexanol	mg/kg MS
1-Hexanol	mg/kg MS
4-Heptanol	mg/kg MS
1-Heptanol	mg/kg MS
1-Octanol	mg/kg MS
2-Butanol	mg/kg MS
2-Ethyl-1-hexanol	mg/kg MS

N° d'échantillon

Désignation d'échantillon Unité

Extrait à l'acide chlorhydrique MS-A

Analyse physique

pH MB
Matière sèche % mass MB

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 06.07.2018

Informations sur les échantillons

N° d'échantillon :	18-093226-01	18-093226-03	18-093226-04	18-093226-05	18-093226-07
Date de réception :	04.06.2018	04.06.2018	04.06.2018	04.06.2018	04.06.2018
Désignation :	S01(0-1)	S01(2-3)	S02(0-1)	S02(1-2)	S03(0-1)
Type d'échantillon :	Sol	331(2 3)	302(0 1)	002(12)	200(0 1)
Date de prélèvement :	29.05.2018	29.05.2018	29.05.2018	29.05.2018	30.05.2018
Récipient :	2X250VB	2X250VB	2X250VB	2X250VB	2X250VB
Température à réception (C°) :	20.1	20.1	20.1	20.1	20.1
Début des analyses :	14.06.2018	14.06.2018	14.06.2018	14.06.2018	14.06.2018
Fin des analyses :	22.06.2018	22.06.2018	22.06.2018	22.06.2018	22.06.2018
·					
N° d'échantillon :	18-093226-09	18-093226-10	18-093226-11	18-093226-11-1	18-093226-13
Date de réception :	04.06.2018	04.06.2018	04.06.2018	04.06.2018	04.06.2018
Désignation :	S03(2-3)	S04(0-1)	S04(1-2)	S04(1-2)	S05(0-1)
Type d'échantillon :					
Date de prélèvement :	30.05.2018	30.06.2018	30.06.2018	30.06.2018	30.05.2018
Récipient :	2X250VB	2X250VB	2X250VB	2X250VB	2X250VB
Température à réception (C°) :	20.1	20.1	20.1	20.1	20.1
Début des analyses :	14.06.2018	14.06.2018	14.06.2018	14.06.2018	14.06.2018
Fin des analyses :	22.06.2018	22.06.2018	22.06.2018	21.06.2018	22.06.2018
N° d'échantillon :	18-093226-15	18-093226-16	18-093226-18	18-093226-19	18-093226-23
Date de réception :	04.06.2018	04.06.2018	04.06.2018	04.06.2018	04.06.2018
Désignation :	S05(2-3)	S06(0-1)	S06(2-3)	S07(0-1)	S07(4-5)
Type d'échantillon :	(- /	,		- (-)	- (-)
Date de prélèvement :	30.05.2018	01.06.2018	01.06.2018	01.06.2018	01.06.2018
Récipient :	250VB	2X250VB	2X250VB	2X250VB	2X250VB
Température à réception (C°) :	20.1	20.1	20.1	20.1	20.1
Début des analyses :	14.06.2018	14.06.2018	14.06.2018	14.06.2018	14.06.2018
Fin des analyses :	22.06.2018	22.06.2018	22.06.2018	22.06.2018	22.06.2018
,					
N° d'échantillon :	18-093226-24	18-093226-24-1	18-093226-26	18-093226-30	18-093226-30
Date de réception :	04.06.2018	04.06.2018	04.06.2018	04.06.2018	04.06.2018
Désignation :	S08(0-1)	S08(0-1)	S08(2-3)	S09(1-2)	S09(1-2)
Type d'échantillon :					
Date de prélèvement :	01.06.2018	01.06.2018	01.06.2018	29.05.2018	29.05.2018
Récipient :	2X250VB	2X250VB	250VB	2X250VB	
Température à réception (C°) :	20.1	20.1	20.1	20.1	
Début des analyses :	14.06.2018	14.06.2018	14.06.2018	14.06.2018	04.07.2018
Fin des analyses :	22.06.2018	19.06.2018	22.06.2018	22.06.2018	06.07.2018
N° d'échantillon :	18-093226-33	18-093226-33	18-093226-34	18-093226-34	18-093226-38
Date de réception :	04.06.2018	04.06.2018	04.06.2018	04.06.2018	04.06.2018
Désignation :	S09(4-5)	S09(4-5)	S10(0-1)	S10(0-1)	S10(4-5)
Type d'échantillon :	()	()	(/	()	()
Date de prélèvement :	29.05.2018	29.05.2018	31.05.2018	31.05.2018	31.05.2018
Récipient :	2X250VB		2X250VB	2220.0	2X250VB
Température à réception (C°) :	20.1		20.1		20.1
Début des analyses :	14.06.2018	04.07.2018	14.06.2018	04.07.2018	14.06.2018
Fin des analyses :	22.06.2018	06.07.2018	22.06.2018	06.07.2018	22.06.2018
,	-	-	-		

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 06.07.2018

Informations sur les échantillons

N° d'échantillon :	18-093226-38	18-093226-39	18-093226-39	18-093226-41	18-093226-41
Date de réception :	04.06.2018	04.06.2018	04.06.2018	04.06.2018	04.06.2018
Désignation :	S10(4-5)	S11(0-1)	S11(0-1)	S11(2-3)	S11(2-3)
Type d'échantillon :					
Date de prélèvement :	31.05.2018	31.05.2018	31.05.2018	31.05.2018	31.05.2018
Récipient :		2X250VB		2X250VB	
Température à réception (C°) :		20.1		20.1	
Début des analyses :	04.07.2018	14.06.2018	04.07.2018	14.06.2018	04.07.2018
Fin des analyses :	06.07.2018	22.06.2018	06.07.2018	22.06.2018	06.07.2018
N° d'échantillon :	18-093226-45	18-093226-45	18-093226-46	18-093226-46	18-093226-46-1
Date de réception :	04.06.2018	04.06.2018	04.06.2018	04.06.2018	04.06.2018
Désignation :	S12(1-2)	S12(1-2)	S12(2-3)	S12(2-3)	S12(2-3)
Type d'échantillon :					
Date de prélèvement :	30.05.2018	30.05.2018	30.05.2018	30.05.2018	30.05.2018
Récipient :	2X250VB		2X250VB		2X250VB
Température à réception (C°) :	20.1		20.1		20.1
Début des analyses :	14.06.2018	04.07.2018	14.06.2018	04.07.2018	14.06.2018
Fin des analyses :	22.06.2018	06.07.2018	22.06.2018	06.07.2018	22.06.2018
N° d'échantillon :	18-093226-49	18-093226-50			
Date de réception :	04.06.2018	04.06.2018			
Désignation :	PS1	PS2			
Type d'échantillon :	101	1 02			
Date de prélèvement :	30.05.2018	30.05.2018			
Récipient :	2X250VB	2X250VB			
Température à réception (C°) :	20.1	20.1			
Début des analyses :	14.06.2018	14.06.2018			
Fin des analyses :	22.06.2018	22.06.2018			
i iii uca ahaiyaca .	22.00.2010	22.00.2010			

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 06.07.2018

Informations sur les méthodes d'analyses

Paramètre	Norme	Laboratoire
Minéralisation à l'eau régale	Méth. interne : " MINE NF ISO 11466"(A)	Wessling Lyon (F)
Métaux	Méth. interne : "ICP-MS NF EN ISO 17294-2"(A)	Wessling Lyon (F)
Sulfates, HCl extr. B (agress. sur béton et acier)	DIN 4030-2 mod. (2008-06)(A)	Wessling Oppin (D)
Extraction à l'acide chlorhydrique (agressivité vis-à-vis des bétons)	DIN 4030-2 (2008-06)(A)	Wessling Oppin (D)
HAP (16)	NF ISO 18287(A)	Wessling Lyon (F)
I. phenol libre	DIN EN ISO 14402 mod. (1999-12)(A)	Wessling Altenberge (D)
Matières sèches	NF ISO 11465(A)	Wessling Lyon (F)
Indice Hydrocarbures (C10-C40) (Agitation mécanique, purification au fluorisil)	NF EN ISO 16703(A)	Wessling Lyon (F)
Benzène et aromatiques	Méth. interne: "BTXHS NF EN ISO 11423-1 / NF EN ISO 22155"(A)	Wessling Lyon (F)
Indice hydrocarbures volatils (C5-C10)	Méth. interne : "C5-C10 BTX NF EN ISO 22155/ NF ISO 11423-1"(A)	Wessling Lyon (F)
pH sur matière solide	NF EN ISO 10390(A)	Wessling Lyon (F)
Alcools	Interne d'après norme NF ISO 11423-1	Wessling Lyon (F)
Lixiviation à l'eau 1h	DIN 38414-4 (1984-10)(A)	Wessling Altenberge (D)
Anions dissous sur eau/lixiviat	DIN EN ISO 10304-3 (1997-11)(A)	Wessling Altenberge (D)

Laboratoires WESSLING S.A.R.L.

Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 06.07.2018

Informations sur les méthodes d'analyses

Commentaires:

18-093226-19

Commentaires des résultats:

HCT GC-FID (S), Indice hydrocarbure C10-C40: Présence de composés à point d'ébullition élevé (supérieur à C40)

Remarque valable pour les échantillons 19 et 34

18-093226-34

Commentaires des résultats:

pH (S), pH: Résultat hors champ d'accréditation : pH hors méthode car supérieur a 10

Les seuils de quantification fournis n'ont pas été recalculés d'après la matière sèche de l'échantillon. Les seuils sont susceptibles d'être augmentés en fonction de la nature chimique de la matrice.

Signataire Rédacteur Signataire Technique

Caroline DELENTE

Assistante Responsable Service Clientèle

Anne-Christine WAYMEL

Responsable Qualité

Laboratoires WESSLING S.A.R.L.

Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

Laboratoire WESSLING, 40 rue du Ruisseau, 38070 Saint-Quentin-Fallavier Cedex

GOLDER ASSOCIATES Monsieur Sébastien BARDET 31 rue Gorge de Loup 69009 LYON Rapport d'essai n° : ULY18-009589-1
Commande n° : ULY-06949-18
Interlocuteur : C. Delente
Téléphone : +33 474 999 629
eMail : Caroline.Delente@wessling.fr

Date : 25.06.2018

Rapport d'essai

Projet 1791429 BdC 1800608

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai, sous réserve du flaconnage reçu (hors flaconnage Wessling), du respect des conditions de conservation des échantillons jusqu'au laboratoire d'analyses et du temps imparti entre le prélèvement et l'analyse préconisé dans les normes suivies.

Les méthodes couvertes par l'accréditation EN ISO 17025 sont marquées d'un A dans le tableau récapitulatif en fin de rapport au niveau des normes.

Les résultats obtenus par ces méthodes sont accrédités sauf avis contraire en remarque.

La portée d'accréditation COFRAC n°1-1364 essais est disponible sur www.cofrac.fr pour les résultats accrédités par les laboratoires Wessling de Lyon. Les essais effectués par le laboratoire de Paris sont accrédités par le COFRAC sous le numéro 1-5578.

Les essais effectués par les laboratoires allemands sont accrédités par le DAKKS sous le numéro D-PL-14162-01-00 (www.as.dakks.de).

Les essais effectués par le laboratoire hongrois de Budapest sont accrédités par le NAT sous le numéro NAT-1-1398 (www.nat.hu).

Les essais effectués par le laboratoire polonais de Krakow sont accrédités par le PCA sous le numéro AB 918 (www.pca.gov.pl).

Ce rapport d'essai ne peut-être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING (EN ISO 17025).

Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai.

La conclusion ne tient pas compte des incertitudes et n'est pas couverte par l'accréditation.

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 \cdot Fax +33 (0)4 74 99 96 37 labo@wessling.fr \cdot www.wessling.fr

St Quentin Fallavier, le 25.06.2018

N° d'échantillon Désignation d'échantillon	Unité	18-093341-01 PZA	18-093341-02 PZ1	18-093341-03 PZ2	18-093341-04 PZ2-D
рН	E/L	7,3 à 20,4°C	7,6 à 20,4°C	7,3 à 20,3°C	7,2 à 20,2°C
Méthanol	μg/l E/L	<1000	<1000	<1000	<1000
Éthanol	μg/l E/L	<100	<100	<100	<100
2-Propanol	μg/l E/L	<100	<100	<100	<100
tert-Butanol	μg/l E/L	<100	<100	<100	<100
n-Propanol	μg/l E/L	<100	<100	<100	<100
2-Méthyl-1-propanol (isobutanol)	μg/l E/L	<100	<100	<100	<100
1-Butanol	μg/l E/L	<100	<100	<100	<100
2-(3)-Pentanol	μg/l E/L	<100	<100	<100	<100
3-Hexanol	μg/l E/L	<100	<100	<100	<100
1-Hexanol	μg/l E/L	<100	<100	<100	<100
4-Heptanol	μg/l E/L	<100	<100	<100	<100
1-Heptanol	μg/l E/L	<100	<100	<100	<100
1-Octanol	μg/l E/L	<100	<100	<100	<100
2-Butanol	μg/l E/L	<100	<100	<100	<100
2-Ethyl-1-hexanol	μg/l E/L	<100	<100	<100	<100
Paramètres globaux / Indices		0.05			0.05
Indice hydrocarbure C10-C40	mg/l E/L	<0,05	<0,05	<0,05	<0,05
Hydrocarbures > C10-C12	mg/I E/L	<0,05	<0,05	<0,05	<0,05
Hydrocarbures > C12-C16	mg/I E/L	<0,05	<0,05	<0,05	<0,05
Hydrocarbures > C16-C21	mg/I E/L	<0,05	<0,05	<0,05	<0,05
Hydrocarbures > C21-C35	mg/I E/L	<0,05 <0,05	<0,05 <0,05	<0,05 <0.05	<0,05
Hydrocarbures > C35-C40	mg/I E/L	•	,	•	<0,05
Indice hydrocarbure (C5-C10)	μg/l E/L	<50 <8,0	<50 <8,0	<50 <8,0	<50 <8.0
Somme des C5 Somme des C6	μg/l E/L μg/l E/L	<8,0	<8,0	<8,0	<8,0 <8,0
Somme des C7	μg/I Ε/L	<8,0	<8,0	<8,0	<8,0
Somme des C8	μg/I E/L	<8.0	<8,0	<8,0	<8,0
Somme des C9	μg/I E/L	<8.0	<8.0	<8,0	<8.0
Somme des C10	μg/l E/L	<8,0	<8,0	<8,0	<8,0
Cations, anions et éléments non métalliques					
Sulfite (SO3)	mg/l E/L	<1,0	<1,0	<1,0	<1,0
Chlorures (CI)	mg/l E/L	280	56	680	740
Nitrates (NO3)	mg/I E/L	38	13	36	35
Sulfates (SO4)	mg/l E/L	630	93	440	450
Nitrites (NO2)	mg/l E/L	0,089	0,32	0,14	0,12
Ammonium (NH4)	mg/I E/L	0,1	2,2	0,1	0,1
Azote ammoniacal (NH4-N)	mg/l E/L	0,078	1,7	0,078	0,078
Azote Kjeldahl (NTK)	mg/l E/L	<2,0	<2,0	<2,0	<2,0
Eléments					
Sodium (Na)	mg/I E/L	290	160	560	570
Chrome (Cr)	μg/l E/L	<5,0	<5,0	<5,0	<5,0
Nickel (Ni)	μg/l E/L	<10	21	<10	<10
Cuivre (Cu)	μg/l E/L	<5,0	25	<5,0	<5,0
Zinc (Zn)	μg/l E/L	<50	<50	<50	<50
Arsenic (As)	μg/l E/L	<3,0	<3,0	<3,0	<3,0
Cadmium (Cd)	μg/l E/L	<1,5	<1,5	<1,5	<1,5
Plomb (Pb)	μg/l E/L	<10	<10	<10	<10
Mercure (Hg)	μg/l E/L	<0,1	4,3	<0,1	<0,1

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 \cdot Fax +33 (0)4 74 99 96 37 labo@wessling.fr \cdot www.wessling.fr

St Quentin Fallavier, le 25.06.2018

N° d'échantillon Désignation d'échantillon	Unité	18-093341-05 BLANC	
· ·			
pH	E/L	6,9 à 20,2°C	
Méthanol	μg/l E/L	<1000	
Éthanol	μg/l E/L	<100	
2-Propanol	μg/l E/L	<100	
tert-Butanol	μg/l E/L	<100	
n-Propanol	μg/l E/L	<100	
2-Méthyl-1-propanol (isobutanol)	μg/I E/L	<100	
1-Butanol	μg/l E/L	<100	
2-(3)-Pentanol	μg/I E/L	<100	
3-Hexanol	μg/I E/L	<100	
1-Hexanol	μg/l E/L	<100	
4-Heptanol	μg/I E/L	<100	
1-Heptanol	μg/I E/L	<100	
1-Octanol	μg/I Ε/L	<100	
2-Butanol	μg/I Ε/L	<100	
2-Ethyl-1-hexanol	μg/I Ε/L	<100	
Z-Littyi- 1-Hexation	µg/i L/L	100	
Paramètres globaux / Indices			
Indice hydrocarbure C10-C40	mg/l E/L	<0,05	
Hydrocarbures > C10-C12	mg/l E/L	<0,05	
Hydrocarbures > C12-C16	mg/l E/L	<0,05	
Hydrocarbures > C16-C21	mg/l E/L	<0,05	
Hydrocarbures > C21-C35	mg/l E/L	<0,05	
Hydrocarbures > C35-C40	mg/l E/L	<0,05	
Indice hydrocarbure (C5-C10)	μg/l E/L	<50	
Somme des C5	μg/l E/L	<8,0	
Somme des C6	μg/l E/L	<8,0	
Somme des C7	μg/l E/L	<8,0	
Somme des C8	μg/l E/L	<8,0	
Somme des C9	μg/l E/L	<8,0	
Somme des C10	μg/l E/L	<8,0	
Cations, anions et éléments non métalliques			
•	mg/l E/L	<1.0	
Sulfite (SO3) Chlorures (CI)	mg/I E/L	<1,0	
· · · · · · · · · · · · · · · · · · ·	mg/I E/L	<1.0	
Nitrates (NO3)	mg/I E/L	<1,0	
Sulfates (SO4)	mg/I E/L mg/I E/L	<0,05	
Nitrites (NO2)	mg/I E/L mg/I E/L	0,1	
Ammonium (NH4)		0,1	
Azote ammoniacal (NH4-N)	mg/I E/L	· · · · · · · · · · · · · · · · · · ·	
Azote Kjeldahl (NTK)	mg/l E/L	<2,0	
Eléments			
Sodium (Na)	mg/l E/L	0,8	
Chrome (Cr)	μg/l E/L	<5,0	
Nickel (Ni)	μg/l E/L	<10	
Cuivre (Cu)	μg/l E/L	<5,0	
Zinc (Zn)	μg/l E/L	<50	
Arsenic (As)	μg/l E/L	<3,0	
Cadmium (Cd)	μg/l E/L	<1,5	
Plomb (Pb)	μg/l E/L	<10	
Mercure (Hg)	μg/l E/L	<0,1	

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 25.06.2018

Informations sur les échantillons

N° d'échantillon :	18-093341-01	18-093341-02	18-093341-03	18-093341-04	18-093341-05
Date de réception :	06.06.2018	06.06.2018	06.06.2018	06.06.2018	06.06.2018
Désignation :	PZA	PZ1	PZ2	PZ2-D	BLANC
Type d'échantillon :	Eau souterraine				
Date de prélèvement :	01.06.2018	01.06.2018	01.06.2018	01.06.2018	01.06.2018
Heure de prélèvement :	-/-	-/-	-/-	-/-	-/-
Récipient :	250V+250PE+5X6	250V+250PE+5X6	250V+250PE+5X6	250V+250PE+5X6	250V+250PE+60P
Recipient.	0PE+4HS	0PE+4HS	0PE+4HS	0PE+4HS	E+2HS
Température à réception (C°) :	21°C	21°C	21°C	21°C	21°C
Début des analyses :	14.06.2018	14.06.2018	14.06.2018	14.06.2018	14.06.2018
Fin des analyses :	21.06.2018	22.06.2018	21.06.2018	21.06.2018	25.06.2018

Laboratoires WESSLING S.A.R.L.

Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 25.06.2018

Informations sur les méthodes d'analyses

Paramètre Indice hydrocarbures (GC) sur eau / lixiviat (HCT) Métaux sur eau / lixiviat (ICP-MS) Métaux sur eau / lixiviat (ICP-MS) Indice Hydrocarbures volatils Alcools pH	Norme NF EN ISO 9377-2(A) NF EN ISO 17294-2(A) NF EN ISO 17294-2(A) NF ISO 11423-1(#) Interne d'après norme NF ISO 11423-1 NF EN ISO 10523(#)	Wessling Lyon (F)	Ech. Concernés
Anions dissous sur eau/lixiviat	DIN EN ISO 10304-3 (1997-11)(A)	Wessling Altenberge (D)	
Ammonium (NH4)	NF EN ISO 11732(#)	Wessling Lyon (F)	
Azote (Kjeldahl) sur eau / lixiviat (conservation à 3°C+2°C)	NF EN 25663(A)	Wessling Lyon (F)	
Anions dissous (filtration à 0,2 μ)	Méth. interne : "ANIONS NF EN ISO 10304-1"(#)	Wessling Lyon (F)	18-093341-01 18-093341-02 18-093341-03 18-093341-04 18-093341-05
Anions dissous (filtration à 0,2 μ)	Méth. interne : "ANIONS NF EN ISO 10304-1"(A)	Wessling Lyon (F)	18-093341-01 18-093341-02 18-093341-03 18-093341-04 18-093341-05

(#)L'absence d'accréditation provient du délai de mise en analyse par rapport au prélèvement supérieur aux exigences normatives.

Anions dissous (filtration à 0,2 μ):

18-093341-01 MeC 1 Paramètres non accrédités : Nitrates (NO3), Nitrites (NO2) 18-093341-02 MeC 1 Paramètres non accrédités : Nitrates (NO3), Nitrites (NO2) 18-093341-03 MeC 1 Paramètres non accrédités : Nitrates (NO3), Nitrites (NO2) 18-093341-04 MeC 1 Paramètres non accrédités : Nitrates (NO3), Nitrites (NO2) 18-093341-05 MeC 1 Paramètres non accrédités : Nitrates (NO3), Nitrites (NO2)

Commentaires:

18-093341-01

Commentaires des résultats:

 $HCT\ GC\text{-}FID\ (E/L),\ Indice\ hydrocarbure\ C10\text{-}C40\text{:}\ Pour\ les\ échantillons\ 01\text{-}02\text{:}$

Résultat sous réserve : Non extrait dans le flacon d'origine : présence d'un dépôt.

Métaux (E/L), Sodium (Na): Résultat hors champ d'accréditation car situé hors du domaine de calibration

remarque valable pour les echantillons 01-02-03-04

Anions dissous E/L, Sulfite (SO3): Flaconnage non conforme.

Aucun flacon stabilisé disponible.

18-093341-02

Commentaires des résultats:

Anions dissous E/L, Sulfite (SO3): Flaconnage non conforme.

Aucun flacon stabilisé disponible.

18-093341-03

Laboratoires WESSLING S.A.R.L.

Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 25.06.2018

Informations sur les méthodes d'analyses

Commentaires des résultats:

HCT GC-FID (E/L), Indice hydrocarbure C10-C40: Pour les échantillons 03-04 :

Résultat sous réserve : Pour effectuer l'extraction dans le flacon d'origine, un retrait d'une partie de la phase aqueuse a été nécessaire. Ce retrait a pu engendrer un sous dosage de l'échantillon.

Anions dissous E/L, Sulfite (SO3): Flaconnage non conforme.

Aucun flacon stabilisé disponible.

18-093341-04

Commentaires des résultats:

Anions dissous E/L, Sulfite (SO3): Flaconnage non conforme.

Aucun flacon stabilisé disponible.

18-093341-05

Commentaires des résultats:

Anions dissous E/L, Sulfite (SO3): Flaconnage non conforme.

Aucun flacon stabilisé disponible.

Pour parfaire la lecture de vos résultats, les seuils sont susceptibles d'être augmentés en fonction de la nature chimique de la matrice. Les métaux réalisés après minéralisation sont les éléments totaux. Sans minéralisation, Il s'agit des éléments dissous.

Compte tenu du dépassement de la température de réception des échantillons par rapport à l'exigence de 8°C, l'accréditation des résultats d'essai a été maintenue sous réserve de la filtration et de l'acidification des échantillons sur site lors de leurs prélèvements selon les paramètres concernés.

Signataire Rédacteur

Signataire Technique

Estelle BOUVET

Responsable Service Clientèle

Sophie DECOT

Responsable du Service LIMS

APPENDIX H

Contrôle qualité des résultats

Contrôle qualité des échantillons S01, S08 et S12 et de leurs doublons (sol)

Paramètres	Unité	Valeur de comparaison	S04(1-2)	S04(1-2)	Ecart des résultats en % sur le S04(1-2)	S08(0-1)	S08(0-1)	Ecart des résultats en % sur le S08(0-1)	S12(2-3)	S12(2-3)	Ecart des résultats en % sur le S12(2-3)
Paramètres globaux / Indices											
Somme des C5	mg/kg MS					<1,5	<1,5	n/a	<1,5	<1,5	n/a
Somme des C6	mg/kg MS					<1,5	<1,5	n/a	<1,5	<1,5	n/a
Somme des C7	mg/kg MS					<1,5	<1,5	n/a	<1,5	<1,5	n/a
Somme des C8	mg/kg MS					<1,5	<1,5	n/a	<1,5	<1,5	n/a
Somme des C9	mg/kg MS					<1,5	<1,5	n/a	<1,5	<1,5	n/a
Somme des C10	mg/kg MS					<1,5	<1,5	n/a	<1,5	<1,5	n/a
Indice hydrocarbure (C5-C10)	mg/kg MS					<10,0	<10,0	n/a	<10,0	<10,0	n/a
Indice hydrocarbure C10-C40	mg/kg MS	500 (a)				<20	<20	n/a	<20	<20	n/a
Hydrocarbures > C10-C12	mg/kg MS					<20	<20	n/a	<20	<20	n/a
Hydrocarbures > C12-C16	mg/kg MS					<20	<20	n/a	<20	<20	n/a
Hydrocarbures > C16-C21	mg/kg MS					<20	<20	n/a	<20	<20	n/a
Hydrocarbures > C21-C35	mg/kg MS					<20	<20	n/a	<20	<20	n/a
Hydrocarbures > C35-C40	mg/kg MS					<20	<20	n/a	<20	<20	n/a
Phénol	Highly Wo					72.0	-20	IVA	-20	120	IVA
			-0.5	-0.47	00/						
Phénol (indice)	mg/kg MS		<0,5	<0,47	6%						
Eléments											
Sodium (Na)	mg/kg MS								2900		
Sulfates (SO4) calc.	mg/kg MS-A		120	110	8%						
Métaux lourds											
Chrome (Cr)	mg/kg MS	811 (c) / 275 (d)	27	28	4%				26	24	8%
Nickel (Ni)	mg/kg MS	356 (c) / 225 (d)	80	82	2%				84	78	7%
Cuivre (Cu)	mg/kg MS	112 (c) / 82 (d)	22	22	0%				23	23	0%
			81	82	1%				89	88	
Zinc (Zn)	mg/kg MS	356 (c) / 135 (d)									1%
Arsenic (As)	mg/kg MS	34 (c) / 3 (d)	<2,0	<2,0	n/a				<2,0	<2,0	n/a
Cadmium (Cd)	mg/kg MS	0,4 (c) / 0,5 (d)	<0,5	<0,5	n/a				<0,5	<0,5	n/a
Mercure (Hg)	mg/kg MS	0,29 (c) / 0,1 (d)	<0,1	<0,1	n/a				<0,1	<0,1	n/a
Plomb (Pb)	mg/kg MS	17 (c) / 18 (d)	<10	<10	n/a				<10	<10	n/a
CAV - BTEX											
Benzène	mg/kg MS	0,5 (b)				<0,1	<0,1	n/a			
Toluène	mg/kg MS	-,-(,				<0,1	<0,1	n/a			
Ethylbenzène	mg/kg MS					<0,1	<0,1	n/a			
m-, p-Xylène	mg/kg MS					<0,1	<0,1	n/a			
o-Xylène	mg/kg MS					<0,1	<0,1	n/a			
Somme des Xylènes	mg/kg MS					-/-	-/-	n/a			
Somme des BTEX	mg/kg MS					-/-	-/-	n/a			
Cumène	mg/kg MS					<0,1	<0,1	n/a			
m-, p-Ethyltoluène	mg/kg MS					<0,1	<0,1	n/a			
Mésitylène	mg/kg MS					<0,1	<0,1	n/a			
o-Ethyltoluène	mg/kg MS					<0,1	<0,1	n/a			
Pseudocumène											
	mg/kg MS	2/1				<0,1	<0,1	n/a			
Somme des CAV	mg/kg MS	6 (a)				-/-	-/-	n/a			
HAP											
Naphtalène	mg/kg MS		<0,05	<0,05	n/a						
Acénaphtylène	mg/kg MS		<0,05	<0,05	n/a						
Acénaphtène	mg/kg MS		<0,05	<0,05	n/a						
Fluorène	mg/kg MS		<0,05	<0.05	n/a						
Phénanthrène	mg/kg MS		<0,05	<0,05	n/a						
Anthracène	mg/kg MS		<0,05	<0,05	n/a						
			<0,05	<0,05	n/a						
Fluoranthène	mg/kg MS										
Pyrène	mg/kg MS		<0,05	<0,05	n/a						
Benzo(a)anthracène	mg/kg MS		<0,05	<0,05	n/a						
Chrysène	mg/kg MS		<0,05	<0,05	n/a						
Benzo(b)fluoranthène	mg/kg MS		<0,05	<0,05	n/a						
Benzo(k)fluoranthène	mg/kg MS		<0,05	<0,05	n/a						
Benzo(a)pyrène	mg/kg MS		<0,05	<0,05	n/a						
Dibenzo(ah)anthracène	mg/kg MS		<0,05	<0,05	n/a						
Indéno(123-cd)pyrène	mg/kg MS		<0,05	<0,05	n/a						
			<0,05	<0,05							
Benzo(ghi)pérylène	mg/kg MS	FO (-)			n/a						
Somme des HAP	mg/kg MS	50 (a)	-/-	-/-	-/-						
Cations, anions et éléments non métalliques											
Sulfite (SO3)	μg/I E/L								<1000	<1000	
Alcool											
Méthanol	mg/kg MS								<20	<20	n/a
Éthanol	mg/kg MS								<2,0	<2,0	n/a
2-Propanol	mg/kg MS								<2,0	<2,0	n/a
tert-Butanol											
	mg/kg MS								<2,0	<2,0	n/a
n-Propanol	mg/kg MS								<2,0	<2,0	n/a
2-Méthyl-1-propanol (isobutanol)	mg/kg MS								<2,0	<2,0	n/a
1-Butanol	mg/kg MS								<2,0	<2,0	n/a
2-(3)-Pentanol	mg/kg MS								<2,0	<2,0	n/a
3-Hexanol	mg/kg MS								<2,0	<2,0	n/a
	mg/kg MS								<2,0	<2,0	n/a
1-Hexanol									<2,0	<2,0	n/a
1-Hexanol									~Z,U	~2,0	ı (/ a
4-Heptanol	mg/kg MS									20.0	m/-
4-Heptanol 1-Heptanol	mg/kg MS mg/kg MS								<2,0	<2,0	n/a
4-Heptanol 1-Heptanol 1-Octanol	mg/kg MS mg/kg MS mg/kg MS								<2,0	<2,0	n/a
4-Heptanol 1-Heptanol 1-Octanol 2-Butanol	mg/kg MS mg/kg MS mg/kg MS mg/kg MS								<2,0 <2,0	<2,0 <2,0	n/a n/a
4-Heptanol 1-Heptanol 1-Octanol	mg/kg MS mg/kg MS mg/kg MS								<2,0	<2,0	n/a

Légende				
	Paramètre non analalysé			
1%	Ecart inférieur à 30%			
-/-	Paramètre non détécté			
<0,05	Paramètre non détécté			
n/a	Non applicable			

Résultats d'analyses des échantillons doublon de Pz2, résultats d'analyse du blanc de transport

Désignation d'échantillon	Unité	Valeur de comparaison	PZ2	PZ2-D*	Ecart entre les doublons en %	BLANC
Méthanol	μg/I E/L		<1000	<1000	n/a	<1000
Éthanol	μg/I E/L		<100	<100	n/a	<100
2-Propanol	μg/I E/L		<100	<100	n/a	<100
tert-Butanol	μg/I E/L		<100	<100	n/a	<100
n-Propanol	μg/I E/L		<100	<100	n/a	<100
2-Méthyl-1-propanol (isobutanol)	μg/I E/L		<100	<100	n/a	<100
1-Butanol	μg/I E/L		<100	<100	n/a	<100
2-(3)-Pentanol	μg/I E/L		<100	<100	n/a	<100
3-Hexanol	μg/I E/L		<100	<100	n/a	<100
1-Hexanol	μg/I E/L		<100	<100	n/a	<100
4-Heptanol	μg/I E/L		<100	<100	n/a	<100
1-Heptanol	μg/I E/L		<100	<100	n/a	<100
1-Octanol	μg/I E/L		<100	<100	n/a	<100
2-Butanol	μg/I E/L		<100	<100	n/a	<100
2-Ethyl-1-hexanol	μg/I E/L		<100	<100	n/a	<100
Paramètres globaux / Indices						
Indice hydrocarbure C10-C40	μg/I E/L	1000 (a)	<50	<50	n/a	<50
Hydrocarbures > C10-C12	μg/I E/L	,	<50	<50	n/a	<50
Hydrocarbures > C12-C16	μg/I E/L		<50	<50	n/a	<50
Hydrocarbures > C16-C21	μg/I E/L		<50	<50	n/a	<50
Hydrocarbures > C21-C35	µg/I E/L		<50	<50	n/a	<50
Hydrocarbures > C35-C40	μg/I E/L		<50	<50	n/a	<50
Indice hydrocarbure (C5-C10)	µg/I E/L		<50	<50	n/a	<50
Somme des C5	μg/I E/L		<8,0	<8.0	n/a	<8,0
Somme des C6	μg/I E/L		<8,0	<8.0	n/a	<8,0
Somme des C7	µg/I E/L		<8,0	<8.0	n/a	<8,0
Somme des C8	µg/I E/L		<8,0	<8,0	n/a	<8,0
Somme des C9	μg/I E/L		<8,0	<8,0	n/a	<8,0
Somme des C10	µg/I E/L		<8,0	<8.0	n/a	<8,0
Cations, anions et éléments non métalliques	μg/1 L/L		~0,0	~0,0	II/a	~0,0
Sulfite (SO3)	μg/I E/L		<1000	<1000	n/a	<1000
Chlorures (CI)	μg/I E/L		680 000	740 000	8%	<1000
Nitrates (NO3)	μg/I E/L		36 000	35 000	3%	<1000
Sulfates (SO4)	μg/I E/L		440 000	450 000	2%	<1000
Nitrites (NO2)	μg/I E/L		140	120	14%	<50
					0%	
Ammonium (NH4)	µg/I E/L		100 78	100 78	0%	100 78
Azote ammoniacal (NH4-N) Azote Kjeldahl (NTK)	μg/I E/L μα/I E/L		<2000	<2000	n/a	<2000
, , ,	µg/1 ⊑/L		<2000	<2000	n/a	<2000
Eléments	// 5//			F=0.000	00/	
Sodium (Na)	μg/I E/L		560 000	570 000	2%	800
Chrome (Cr)	μg/I E/L		<5,0	<5,0	n/a	<5,0
Nickel (Ni)	µg/I E/L		<10	<10	n/a	<10
Cuivre (Cu)	µg/I E/L		<5,0	<5,0	n/a	<5,0
Zinc (Zn)	µg/I E/L		<50	<50	n/a	<50
Arsenic (As)	µg/I E/L		<3,0	<3,0	n/a	<3,0
Cadmium (Cd)	µg/I E/L		<1,5	<1,5	n/a	<1,5
Plomb (Pb)	μg/I E/L		<10	<10	n/a	<10
Mercure (Hg) *Pz2-D est le doublon de l'échantillon préleva	μg/I E/L		<0,1	<0,1	n/a	<0,1

^{*}Pz2-D est le doublon de l'échantillon prélevé sur le Pz2. Il est plus conservateur de présenter les valeurs mesurées dans l'échantillon Pz2-D qui sont supérieures à celles mesurées dans l'échantillon Pz2.

<u>Légende</u>				
<xx< th=""><th>/aleur inférieure à la limite de quantification du laboratoire</th></xx<>	/aleur inférieure à la limite de quantification du laboratoire			
1%	Ecart inférieur à 30%			
n/a	Non applicable			

golder.com