

PROJET EOLIEN DE LA PERRIERE - RENOUVELLEMENT

Commune de Sainte-Suzanne (La Réunion - 974)

AE.3.1: RESUME NON TECHNIQUE DE L'ETUDE DE DANGERS

74 rue Lieutenant de Montcabrier,34536 Béziers Cedex

Agence Réunion: 7 rue Henri Cornu, 97490 Ste Clotilde

tel. 02 62 23 75 28 - contact.oi@quadran.fr

SOMMAIRE

Som	MAIRE	3
l.	Introduction	5
II.	DESCRIPTION DE L'INSTALLATION	5
III.	DESCRIPTION DE L'ENVIRONNEMENT DE L'INSTALLATION	11
IV.	LES POTENTIELS DANGERS DE L'INSTALLATION	14
V.	LES RETOURS D'EXPERIENCE	15
VI.	L'ANALYSE PRELIMINAIRE DES RISQUES	17
VII.	L'ETUDE DETAILLEE DES RISQUES	19
VIII.	Conclusion	32

INFORMATIONS SUR LE DOCUMENT							
REDACTEUR Marine DAVID – Chargée de mission Environnement							
SOCIETE Quadran							
DATE DE REDACTION	Février 2018 – modifié septembre 2018						
Nom du fichier	QUADRAN-LA PERRIERE-AE3.1_RNT_EDD						

I. Introduction

Quadran porte le projet de parc éolien de La Perrière - Renouvellement sur la commune de Sainte-Suzanne, dans le département de la Réunion (974). Le futur parc éolien de La Perrière — Renouvellement sera composé de 9 aérogénérateurs (type Vestas V110 ou équivalent), de deux postes de livraison et d'un dispositif de stockage distinct, constitué de 2 ateliers de charge batteries.

Ce projet éolien de La Perrière – Renouvellement s'inscrit sur le site du parc éolien existant de La Perrière. Quadran exploite le parc éolien de La Perrière depuis 2005. Celui–ci est constitué de 37 aérogénérateurs de modèle Vergnet GEV MP 275/32. Les éoliennes qui constituent ce parc éolien arrivant en fin de vie, Quadran souhaite réaliser le renouvellement de cette centrale.

La démarche de renouvellement sur le site, va consister à démanteler totalement la centrale éolienne de La Perrière, en vue de reconfigurer de manière optimale le site en y installant des éoliennes plus puissantes. Le nombre total d'éoliennes sera divisé par 4 alors que la puissance installée du parc sera multipliée par 2. Cette optimisation va dans le sens d'une moindre consommation des terrains agricoles et naturels et d'une augmentation significative de la production d'électricité verte sur ce site.

Conformément à la réglementation en vigueur relative aux Installations Classées pour la Protection de l'Environnement (ICPE) et à l'article L.181-25 du Code de l'Environnement, une étude de dangers doit être réalisée. Cette étude a pour objectif de rendre compte de l'examen effectué pour caractériser, analyser, évaluer, prévenir et réduire les risques du projet éolien de La Perrière - Renouvellement, autant que technologiquement réalisable et économiquement acceptable, que leurs causes soient intrinsèques aux substances ou matières utilisées, liées aux procédés mis en œuvre ou dues à la proximité d'autres risques d'origine interne ou externe à l'installation.

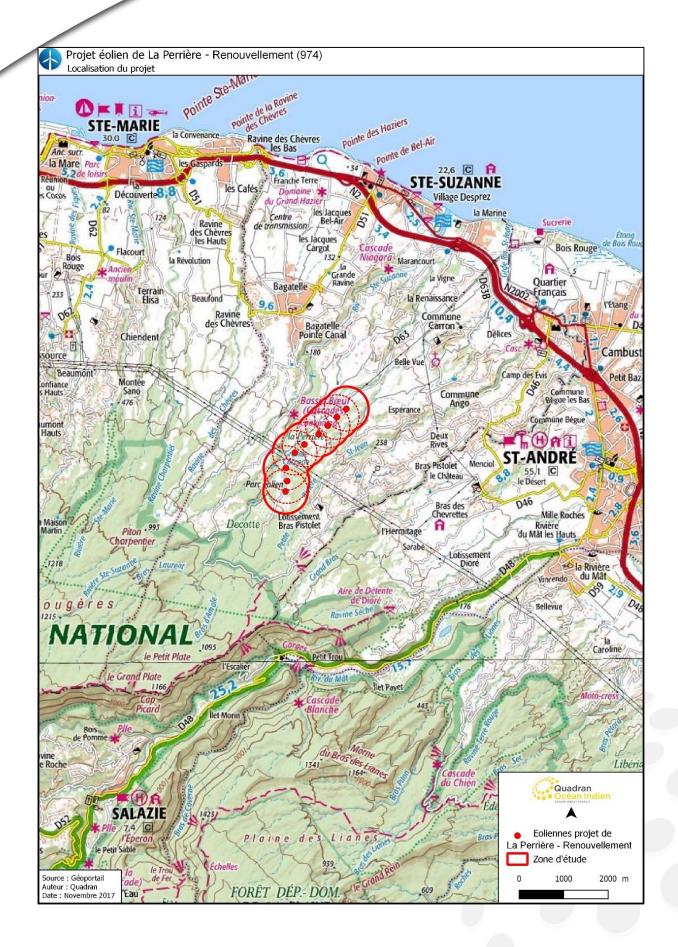
Le présent document est le résumé non technique de l'étude de dangers réalisée dans le cadre de la demande d'autorisation environnementale. Il a été conçu pour faciliter la prise de connaissance par le public des informations contenues dans l'étude de dangers. L'étude de dangers a été réalisée en conformité avec le guide technique de l'INERIS et du SER-FEE dans sa version de Mai 2012 – « Elaboration de l'étude de dangers dans le cadre des parcs éoliens ». Afin de faciliter la lecture et la compréhension de la méthodologie utilisée, un exposé des objectifs de chacun des chapitres est présenté en amont.

II. DESCRIPTION DE L'INSTALLATION

Cette partie a eu pour objectif de caractériser l'installation envisagée ainsi que son organisation et son fonctionnement, en vue d'identifier les principaux potentiels de danger qu'elle représente, au regard notamment de la sensibilité de l'environnement du site.

LOCALISATION DE L'INSTALLATION

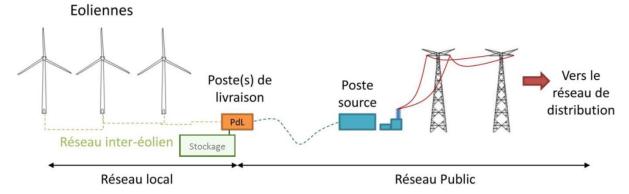
Le présent projet éolien est localisé sur la commune de Sainte-Suzanne, dans le département de la Réunion (974). Plus précisément, le projet se trouve à environ 11 km à l'est de la ville de Saint-Denis et à environ 6 km à l'ouest de la ville de Saint-André, sur des terres agricoles et boisées.


Le tableau suivant indique les coordonnées géographiques des aérogénérateurs, des deux postes de livraison ainsi que les dispositifs de stockage projetés.

Installation		ONNEES S84	ALTITUDE	ALTITUDE BOUT DE
INSTALLATION	LONGITUDE	LATITUDE	SOL (M NGF)	PALE (M NGF)
E1	55°35'40"E	20°56'56"S	337	472
E2	55°35'32"E	20°57'03"S	364	499
E3	E3 55°35'25"E 20°57'09"S		392	527
E4	55°35'19"E	20°57'14"S 414		549
E5	55°35'06"E	20°57'22"S	460	595
E6	55°34'59"E	20°57'28"S	487	622
E7	E7 55°34'52"E 20°57'39"S		526	661
E8	55°34'53"E	20°57'49"S	558	693
E9	55°34'52"E	20°57'57"S	572	707
PDL - stockage1	55°35'35"E	20°56'55"S	345	/
PDL – stockage 2	55°35'35"E	20°56'56"S	345	/

E : Eolienne / PDL-stockage : Poste de livraison et de stockage de l'énergie produite

Le projet est situé dans les hauts de Ste Suzanne, au sud-ouest du lotissement Bellevue (carte de situation page suivante).



CARACTERISTIQUES DE L'INSTALLATION

Le parc éolien de La Perrière - Renouvellement sera composé des éléments suivants :

- 9 éoliennes d'une hauteur maximale de 135 m en bout de pale, fixées sur une fondation adaptée et accompagnées d'une aire stabilisée appelée « aire de levage » ou « aire de grutage » ;
- un réseau de câbles enterrés permettant d'évacuer l'électricité produite par chaque éolienne vers le poste de livraison électrique (réseau appelé « inter-éolien »). L'itinéraire de ces câbles empruntera principalement les routes ainsi que les parcelles où seront implantées les éoliennes ;
- un système de stockage d'énergie, constitué d'un assemblage de batteries de technologie Lithium-Ion, regroupées au sein de 2 ateliers de charge;
- 2 postes de livraison électrique, concentrant l'électricité de chaque éolienne et organisant son évacuation vers le réseau public d'électricité;
- un réseau de câbles enterrés permettant d'évacuer l'électricité regroupée au poste de livraison ;
- un réseau de chemins d'accès aux éoliennes et aux postes de livraison.

Composition d'un parc éolien

Les machines qui seront implantées sur le site sont de type Vestas V110 ou équivalent. Ces éoliennes ont une hauteur de moyeu d'environ 82 m. La hauteur totale en bout de pale sera quant à elle de 135 m.

Les éoliennes sont composées de trois principaux éléments :

- <u>le rotor</u> : il est composé de trois pales construites en matériaux composites et réunies au niveau du moyeu. Il se prolonge dans la nacelle pour constituer l'arbre lent ;
- <u>le mât</u>: il est composé de plusieurs tronçons. Il peut, selon les modèles, accueillir le transformateur qui permet d'élever la tension électrique de l'éolienne au niveau de celle du réseau électrique;
- <u>la nacelle</u>: elle abrite plusieurs éléments fonctionnels: le générateur (transforme l'énergie de rotation du rotor en énergie électrique); le système de freinage mécanique; le système d'orientation de la nacelle qui place le rotor face au vent; les outils de mesures du vent (anémomètre, girouette); le balisage diurne et nocturne nécessaire à la sécurité aéronautique.

Le projet de centrale éolienne de La Perrière - Renouvellement intègre une capacité de stockage de l'électricité produite par éoliennes, afin de permettre un lissage de la production au point d'injection sur le réseau.

Plusieurs emprises au sol sont nécessaires pour la construction et l'exploitation d'un parc éolien :

 la surface de chantier est une surface temporaire, durant la phase de construction, destinée aux manœuvres des engins et au stockage au sol des éléments constitutifs des éoliennes;

- la fondation de l'éolienne est recouverte de terre végétale. Ses dimensions exactes sont calculées en fonction des éoliennes et des propriétés du sol ;
- la zone de surplomb ou de survol correspond à la surface au sol au-dessus de laquelle les pales sont situées, en considérant une rotation à 360° du rotor par rapport à l'axe du mât ;
- la plateforme correspond à une surface permettant le positionnement de la grue destinée au montage et aux opérations de maintenance liées aux éoliennes. Sa taille varie en fonction des éoliennes choisies et de la configuration du site d'implantation.

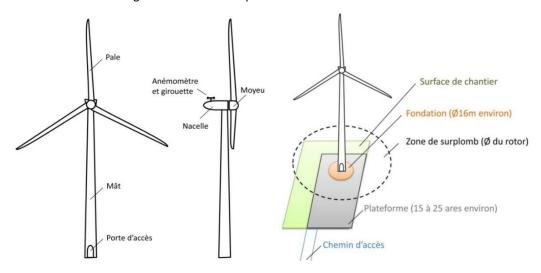
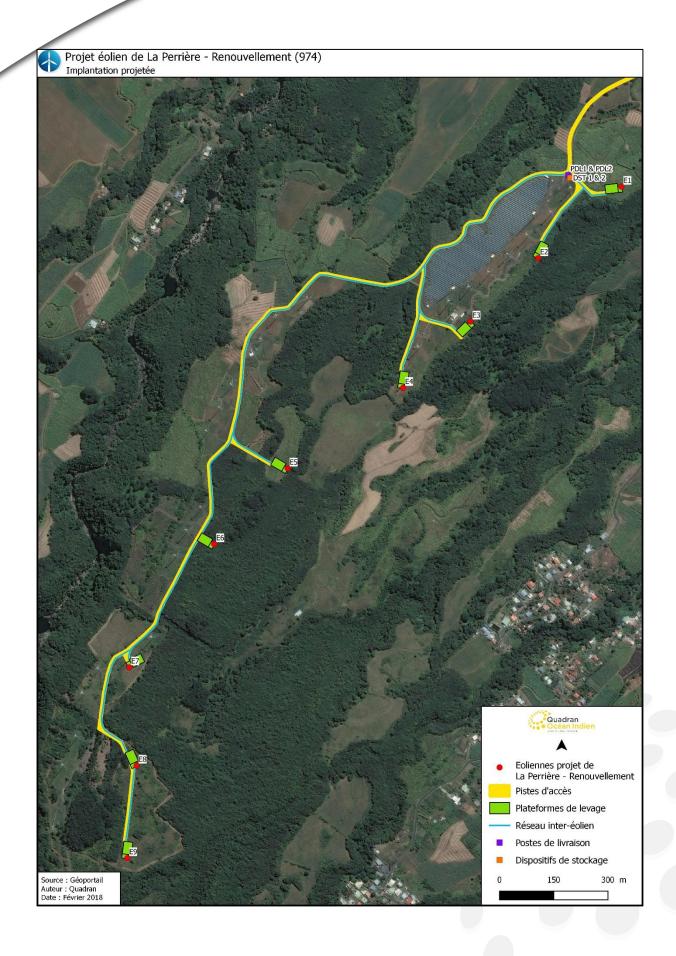


Schéma simplifié d'une éolienne (à gauche) et illustration des emprises au sol d'une éolienne (à droite)

FONCTIONNEMENT D'UNE EOLIENNE

Les instruments de mesure de vent placés au-dessus de la nacelle conditionnent le fonctionnement de l'éolienne. Grâce aux informations transmises par la girouette qui détermine la direction du vent, le rotor se positionnera pour être continuellement face au vent.


Les pales se mettent en mouvement lorsque l'anémomètre indique une vitesse de vent d'environ 10 km/h et c'est seulement à partir de 12 km/h que l'éolienne peut être couplée au réseau électrique. Le rotor et l'arbre dit « *lent* » transmettent alors l'énergie mécanique à basse vitesse (entre 5 et 20 tr/min) aux engrenages du multiplicateur, dont l'arbre dit « *rapide* » tourne environ 100 fois plus vite que l'arbre lent. Certaines éoliennes sont dépourvues de multiplicateur et la génératrice est entraînée directement par l'arbre « *lent* » lié au rotor. La génératrice transforme l'énergie mécanique captée par les pales en énergie électrique.

La puissance électrique produite varie en fonction de la vitesse de rotation du rotor. Dès que le vent atteint environ 50 km/h à hauteur de nacelle, l'éolienne fournit sa puissance maximale. Cette puissance est dite « nominale ».

Pour une éolienne de 2 MW par exemple, la production électrique atteint 2 000 kWh dès que le vent atteint environ 50 km/h. L'électricité produite par la génératrice correspond à un courant alternatif de fréquence 50 Hz avec une tension de 400 à 690 V. La tension est ensuite élevée jusqu'à 15 000 V par un transformateur placé dans chaque éolienne pour être ensuite injectée dans le réseau électrique public. Lorsque la mesure de vent, indiquée par l'anémomètre, atteint des vitesses de plus de 100 km/h (variable selon le type d'éoliennes), l'éolienne cesse de fonctionner pour des raisons de sécurité. Deux systèmes de freinage permettront d'assurer la sécurité de l'éolienne :

- un freinage aérodynamique : les pales prennent alors une orientation parallèle au vent ;
- un freinage mécanique : positionné sur l'arbre de transmission à l'intérieur de la nacelle.

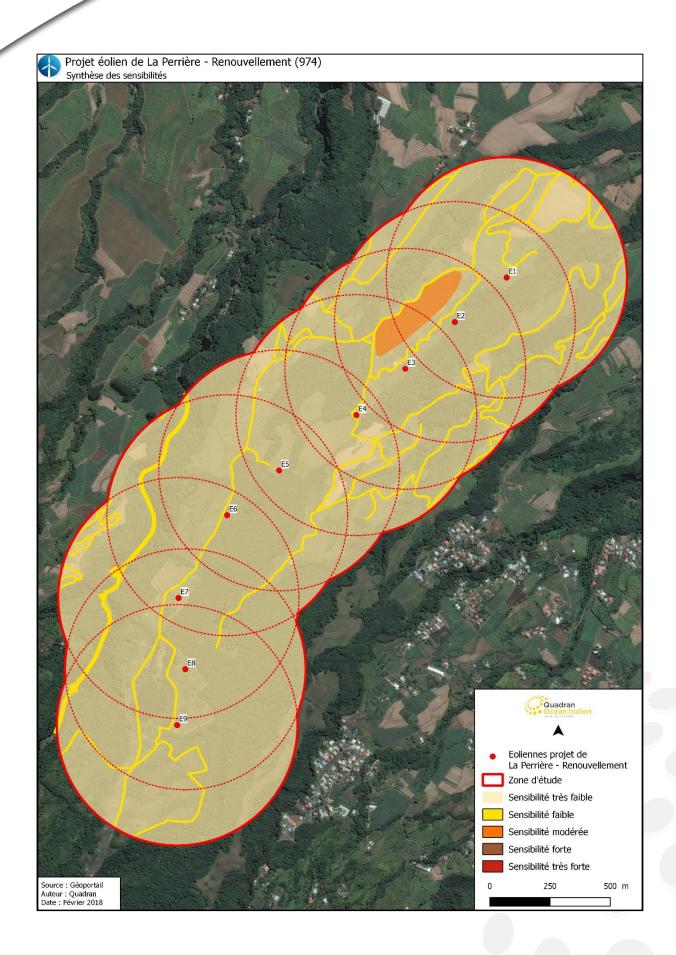
III. DESCRIPTION DE L'ENVIRONNEMENT DE L'INSTALLATION

Cette partie a eu pour objectif de décrire l'environnement dans la zone d'étude de l'installation, afin d'identifier les principaux intérêts à protéger (enjeux) et les facteurs de risque que peut représenter l'environnement vis-àvis de l'installation (agresseurs potentiels). Un résumé est présenté ci-après.

Compte tenu des spécificités de l'organisation spatiale d'un parc éolien composé de plusieurs éléments disjoints, la zone sur laquelle porte l'étude de dangers est constituée d'une aire d'étude par éolienne. Chaque aire d'étude correspond à l'ensemble des points situés à une distance inférieure ou égale à 500 m à partir de l'emprise du mât de l'éolienne.

Le projet de parc éolien de La Perrière - Renouvellement étant composé de 9 éoliennes, 9 aires d'études ont été définies. Ces 9 aires d'études correspondent à la zone d'étude globale du projet. Les dispositifs de stockage étant situés à proximité d'éoliennes, les aires d'études définies par un périmètre de 35 m autour des conteneurs batteries, sont incluses dans les aires d'étude des éoliennes.

Les principales caractéristiques de l'environnement de l'installation recensées dans la zone d'étude sont résumées dans le tableau ci-dessous.


THEM	ATIQUE	DESCRIPTION
	Zones urbanisées et urbanisables ERP	L'habitation la plus proche est située à environ 510 m (éolienne E1) au lieu-dit La Liberté. Aucune zone urbanisable n'est recensée dans la zone d'étude. Aucun Etablissement Recevant du Publique (ERP) n'est recensé dans la zone d'étude.
Environnement humain	ICPE et INB	Aucune Installation Nucléaire de Base (INB) n'est recensée dans la zone d'étude. Une Installation Classée pour la Protection de l'Environnement (ICPE) est recensée dans la zone d'étude. Il s'agit du parc éolien de La Perrière. Ce parc éolien sera totalement démantelé lors de la construction du parc éolien de La Perrière - Renouvellement.
	Autres activités	Le site d'implantation du projet est localisé dans une zone rurale et agricole. On note la présence de la centrale solaire Hélio La Perrière, exploitée par la SARL Hélio la Perrière, filiale de Quadran. On note également la présence, dans la zone d'étude, du canyon de Sainte-Suzanne et de plusieurs bassins, qui accueillent une activité de canyoning, tout au long de l'année.
	Contexte climatique	L'île de la Réunion est influencée par un climat tropical humide, marqué par des températures assez peu variables et des précipitations très contrastées selon la saison. Les principaux phénomènes météorologiques recensés dans le département sont les suivants : l'orage: 11,7 j/an; la neige: 0 j/an; le gel: 0 j/an.
Environnement naturel	Risques naturels	Vis-à-vis du risque inondation, d'après la base de données du PEIGEO (Plateforme d'Echange de l'Information Géographique à la Réunion), la zone d'étude est incluse dans un secteur où le risque est nul à fort. Au droit des éoliennes, ce risque est nul. D'après la base de données du PEIGEO, la zone d'étude est incluse dans un secteur où le risque de mouvement de terrain est faible à moyen, jusqu'à fort. Au droit des éoliennes E1, E3, E4, E5, E6, E7, E8 et E9, ce risque est faible à moyen. Au droit de l'éolienne E2, ce risque

THEM	IATIQUE	DESCRIPTION
		est moyen. Le risque potentiel de mouvement de terrain sera pris en compte au moment de l'élaboration des massifs de fondation (étude géotechnique). Le risque potentiel de retrait et de gonflement des argiles sera pris en compte au moment de l'élaboration des massifs de fondation (étude géotechnique). D'après le DDRM (Dossier Départemental des Risques Majeurs) de la Réunion, la commune de Sainte-Suzanne est concernée par le risque « cyclones et vents forts ». En cas de cyclone, les pales des éoliennes se mettront automatiquement en drapeau afin de ne plus avoir de prise au vent. Le rotor sera quant à lui maintenu face au vent grâce à une alimentation autonome par groupe électrogène. Les autres risques naturels usuellement pris en compte sont faibles voire inexistants (incendie, foudroiement ou encore séisme). La zone d'étude n'est traversée par aucune autoroute, par aucune route nationale, ni par aucune route départementale. A une échelle plus fine, la zone d'étude est parcourue par plusieurs chemins d'exploitation, qui complètent le réseau de voirie. Le trafic
	Voies de communications	routier y est très faible. Aucune ligne ferroviaire n'est recensée dans l'aire d'étude. De même, aucune voie navigable n'est recensée dans la zone d'étude, ainsi qu'aucun aéroport ou aérodrome. La Direction Générale de l'Aviation Civile (DGAC) indique que le projet éolien de La Perrière – Renouvellement n'est pas affecté par les servitudes aéronautiques rédhibitoires liées à la proximité immédiate d'un aérodrome civil, à la circulation aérienne ou à la protection d'appareils de radio-navigation.
Environnement matériel	Réseaux publics et privés	Au droit de la zone d'étude, aucune installation de type canalisations de transport (gaz combustibles, hydrocarbures liquides ou liquéfiés et produits chimiques), ou réseaux d'assainissement (stations d'épuration) n'est présente. La zone d'étude se trouve dans un périmètre de protection rapprochée et une zone de surveillance renforcée liés aux captages d'eau potable du « <i>Bras Douyère</i> », de « <i>Valéry</i> » et du « <i>Bassin Pilon</i> » de la commune de Sainte-Suzanne. A noter également, la présence de trois lignes électriques aériennes 63kV dans la zone d'étude. La ligne électrique 63kV n°1, d'orientation nord-ouest/sud-est, passe par la Perrière avant de bifurquer en direction de Bois Rouge et de la centrale Charbon-Bagasse. Cette ligne électrique passe dans les aires d'études des éoliennes E7, E6, E5, E4, E3, E2 et E1. Les lignes électriques 63kV n°2 et 3, d'orientation nord-ouest/sud-est, passent entre les éoliennes E6 et E7. Enfin, deux faisceaux hertziens, donc immatériels, l'un appartenant à Orange, et l'autre à SFR, sont recensés dans la zone d'étude. Ils passent dans les aires d'études des éoliennes E3 et E1. Lors de la construction du parc éolien de La Perrière - Renouvellement, Orange
	Autres ouvrage publics	déviera son faisceau, afin que l'éolienne E3 ne perturbe pas le signal. Il n'y a aucun barrage, digue, château d'eau, ou bassins de rétention dans la zone d'étude.
	Pasiics	dans la zone a ctadel

Dans le cadre du projet du parc éolien de La Perrière - Renouvellement, la principale sensibilité est liée à la présence de la centrale solaire Hélio La Perrière (sensibilité modérée).

IV. LES POTENTIELS DANGERS DE L'INSTALLATION

Cette partie de l'étude de dangers a eu pour objectif de mettre en évidence les éléments de l'installation pouvant constituer un danger potentiel, que ce soit au niveau des éléments constitutifs des éoliennes, des produits contenus dans l'installation, des modes de fonctionnement, etc. Un résumé est présenté ci-après.

LES POTENTIELS DANGERS LIES AUX PRODUITS UTILISES

L'activité de production d'électricité par les éoliennes ne consomme pas de matières premières, ni de produits pendant la phase d'exploitation. De même, cette activité ne génère pas de déchet, ni d'émission atmosphérique, ni d'effluent potentiellement dangereux pour l'environnement.

Les produits identifiés dans le cadre d'un parc éolien sont utilisés pour le bon fonctionnement des éoliennes, leur maintenance et leur entretien :

- produits nécessaires au bon fonctionnement des installations (graisses et huiles de transmission, huiles hydrauliques pour systèmes de freinage,...);
- produits de nettoyage et d'entretien des installations (solvants, dégraissants, nettoyants,...) et les déchets industriels banals associés (pièces usagées non souillées, cartons d'emballage,...).
- pour le système de stockage, l'électrolyte, qui est le seul composant liquide des batteries, est un composé organique à base d'éther et d'Esther.

Les produits utilisés dans les éoliennes ne présentent pas de réel danger, si ce n'est lorsqu'ils sont soumis à un incendie, ils vont entretenir cet incendie.

LES POTENTIELS DANGERS LIES AU FONCTIONNEMENT DE L'INSTALLATION

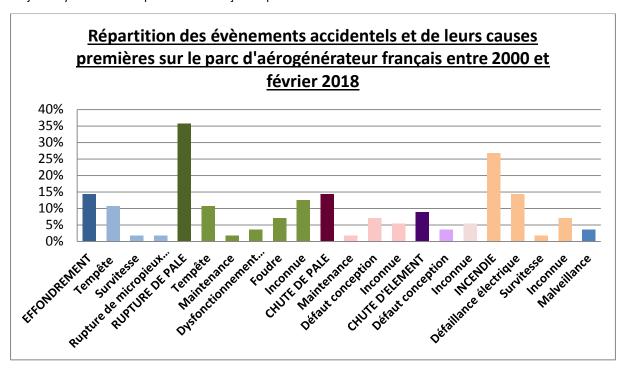
Les dangers liés au fonctionnement des éoliennes sont de 5 types :

- chute d'éléments de l'éolienne (boulons, morceaux d'équipements, etc.);
- projection d'éléments (morceau de pale, brides de fixation, etc.);
- effondrement de tout ou partie de l'éolienne ;
- échauffement de pièces mécaniques ;
- courts-circuits électriques (éolienne, poste de livraison ou dispositif de stockage).

REDUCTION DES POTENTIELS DANGERS A LA SOURCE

Le choix opéré pour l'implantation d'un parc éolien tient compte de la distance séparant les éoliennes entreelles et des servitudes liées à la présence d'infrastructures voisines. Ainsi, dans le cadre de la définition du projet éolien de La Perrière - Renouvellement, les contraintes techniques et sécuritaires du site d'étude ont été prises en compte. Des distances minimales d'éloignement ont été respectées dont :

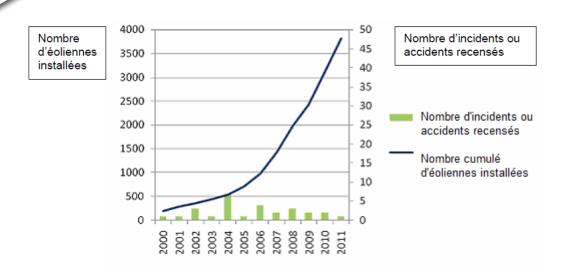
- 500 m vis-à-vis des premières habitations et des zones urbanisables ;
- 145 m des lignes électriques aériennes, soit la hauteur totale de l'éolienne pale verticale plus une distance de sécurité supplémentaire de 10 mètres; Un courrier d'information a été envoyé en ce sens à EDF, gestionnaire des lignes. Nous n'avons pas reçu de réponse.


D'autre part, l'ensemble des systèmes de sécurité ainsi que les opérations de maintenance de l'installation contribuent à réduire les potentiels de dangers liés au fonctionnement de l'installation.

V. LES RETOURS D'EXPERIENCE

L'objectif de cette partie de l'étude de dangers a été de rappeler les différents incidents et accidents qui sont survenus dans la filière éolienne, en vue de l'analyse des risques pour l'installation projetée et d'en tirer des enseignements pour une meilleure maîtrise du risque dans les parcs éoliens. Un résumé est présenté ci-après.

Dans l'état actuel des connaissances, un total de 67 incidents a pu être recensé entre 2000 et février 2018 sur les parcs éoliens français. A noter que la base de données établie apparaît comme représentative des incidents majeurs ayant affecté le parc éolien français depuis l'année 2000.



Par ordre d'importance, les accidents les plus recensés sont les ruptures de pale, les incendies, les effondrements, les chutes de pale et les chutes d'éléments d'éoliennes. La principale cause de ces accidents est la défaillance électrique.

Par ailleurs, à partir de l'ensemble des phénomènes dangereux qui ont été recensés, il a été possible d'étudier leur évolution en fonction du nombre d'éoliennes installées. Il apparaît clairement que le nombre d'incidents n'augmente pas proportionnellement au nombre d'éoliennes installées. Depuis 2005, l'énergie éolienne s'est en effet fortement développée en France, mais le nombre d'incidents par an reste relativement constant. Cette tendance s'explique principalement par un parc éolien français assez récent, qui utilise majoritairement des éoliennes de nouvelle génération, équipées de technologies plus fiables et plus sûres.

Aucun cas d'accident touchant l'exploitation de batteries de stockage d'énergie de technologie Li-ion n'a été enregistré, en France ou à l'international. Si plusieurs incendies ont été répertoriés dans des usines de production de batteries, dont des batteries Li-ion, ce le fut lors de processus de fabrication (mise en œuvre de produits inflammables) ou d'essais en laboratoire.

Evolution du nombre d'incidents annuels en France et nombre d'éoliennes installées

LES PRINCIPAUX EVENEMENTS REDOUTES

Le retour d'expérience de la filière éolienne française et internationale a permis d'identifier les principaux évènements redoutés suivants :

- effondrements;
- ruptures de pales ;
- chutes de pales et d'éléments de l'éolienne ;
- incendie.

VI. L'ANALYSE PRELIMINAIRE DES RISQUES

L'objectif de cette partie a été d'identifier les scénarios d'accident majeurs et les mesures de sécurité qui empêchent ces scénarios de se produire ou en limitent les effets. Un résumé est présenté ci-après.

METHODOLOGIE

L'objectif cité précédemment a été atteint au moyen d'une identification de tous les scénarios d'accident potentiel pour une installation (ainsi que des mesures de sécurité) basée sur un questionnement systématique des causes et conséquences possibles des évènements accidentels, ainsi que sur le retour d'expérience disponible. Les scénarios d'accident sont ensuite hiérarchisés en fonction de leur intensité et de l'étendue possible de leurs conséquences. Cette hiérarchisation permet de « filtrer » les scénarios d'accident qui présentent des conséquences limitées et les scénarios d'accidents majeurs (ces derniers pouvant avoir des conséquences sur les personnes tierces).

LES SCENARIOS D'ACCIDENT POTENTIELS

L'analyse préliminaire des risques a permis d'identifier 27 scénarios d'accident pouvant se produire dans cadre de l'exploitation d'un parc éolien. Ces scénarios ont été regroupés de la manière suivante :

- scénarios relatifs aux risques liés à la glace (dépôt de glace sur les pâles, le mât et la nacelle lorsque l'éolienne est arrêtée; dépôt de glace sur les pales lorsque l'éolienne est en mouvement);
- scénarios relatifs aux risques d'incendie (court-circuit; échauffement des parties mécaniques et inflammation; surtension;...);
- scénarios relatifs aux risques de fuites (fuite du système de lubrification, convertisseur, transformateur; renversement de fluides lors des opérations de maintenance);
- scénarios relatifs aux risques de chute d'éléments (défaut de fixation de la trappe ; défaillance fixation de l'anémomètre ; défaut fixation de la nacelle) ;
- scénarios relatifs aux risques de projection de pales ou de fragments de pales (survitesse ; fatigue et corrosion, erreur de maintenance);
- scénarios relatifs aux risques d'effondrement des éoliennes (vents forts, fatigue, crash d'aéronef, etc.).

L'analyse préliminaire des risques a également envisagé 3 scénarios spécifiques au dispositif de stockage : 2 scénarios liés au risque d'incendie (court-circuit ; points chauds suite à une erreur lors d'une intervention de maintenance), et 1 scénario relatif aux effets d'un rejet accidentel de liquide.

LES MESURES DE SECURITE

Afin de limiter les risques d'accidents ou d'incidents liés aux activités du parc éolien, la société Quadran prévoit de mettre en place un certain nombre de mesures de prévention ou de protection en collaboration avec les constructeurs des éoliennes :

- systèmes de sécurité contre la survitesse (freins aérodynamiques passifs et actifs, surveillance de la rotation, détection de la vitesse du vent);
- systèmes de sécurité contre le risque de vents forts (coupure de l'éolienne en cas de détection de vents forts);

- systèmes de sécurité contre le risque électrique (organes de coupure électrique, isolement, mise à la terre);
- systèmes contre l'échauffement des pièces mécaniques (détecteurs de température, systèmes de refroidissement);
- systèmes de sécurité contre le risque de foudre (installation anti foudre comprenant un paratonnerre sur la nacelle et les pales);
- systèmes de sécurité contre le risque d'incendie (détection de fumée, de température, alarme du centre de contrôle et intervention des moyens de secours);
- systèmes de sécurité contre le risque de fuite de liquides (détecteur de niveau de liquide, rétention formée par la structure de l'éolienne);
- systèmes de sécurité contre la formation du givre (basés sur la détection et arrêt de l'éolienne, affichage du risque pour les promeneurs);
- systèmes de sécurité contre le risque d'effondrement de l'éolienne (conception des fondations basées sur des normes et de l'ingénierie, conception des éoliennes adaptée à la force du vent);
- systèmes de sécurité contre le risque d'erreurs de maintenance (formation du personnel, manuel de maintenance).

RESULTATS DE L'ANALYSE PRELIMINAIRE DES RISQUES

Dans le cadre de l'analyse préliminaire des risques génériques des parcs éoliens, trois catégories de scénarios sont a priori exclues de l'étude détaillée, en raison de leur faible intensité : incendie du poste de livraison, incendie de l'éolienne et infiltration de liquides dans le sol.

Ainsi les scénarios qui doivent faire l'objet d'une étude détaillée dans le cas du projet de parc éolien de La Perrière - Renouvellement sont les suivants :

- projection de tout ou une partie de pale ;
- effondrement de l'éolienne ;
- chute d'éléments de l'éolienne ;

Pour le système de stockage, seul le scénario de l'incendie a été étudié dans le cadre de l'étude détaillée des risques.

VII. L'ETUDE DETAILLEE DES RISQUES

L'étude détaillée des risques a visé à caractériser les scénarios sélectionnés à l'issue de l'analyse préliminaire des risques en termes de probabilité, cinétique, intensité et gravité. Son objectif a donc été de préciser le risque généré par l'installation projetée et d'évaluer les mesures de maîtrise des risques mises en œuvre. Enfin, l'étude détaillée a permis de vérifier l'acceptabilité des risques potentiels générés par l'installation. Un résumé est présenté ci-après.

DEFINITIONS / METHODOLOGIE

Dans le cadre de la présente étude de dangers, il a été utilisé la méthode *ad hoc* préconisée par le guide technique national relatif à l'étude de dangers dans le cadre d'un parc éolien dans sa version de mai 2012. Cette méthode est inspirée des méthodes utilisées pour les autres phénomènes dangereux des installations classées, dans l'esprit de la loi du 30 juillet 2003. Les principales définitions sont rappelées ci-dessous.

La **cinétique** d'un accident est la vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables. Dans le cadre d'une étude de dangers pour des éoliennes, il est supposé, de manière prudente, que tous les accidents considérés ont une cinétique rapide.

L'intensité des effets des phénomènes dangereux est définie par rapport à des valeurs de référence exprimées sous forme de seuils d'effets toxiques, d'effets de surpression, d'effets thermiques et d'effets liés à l'impact d'un projectile, pour les hommes et les structures. Le degré d'exposition est défini comme le rapport entre la surface atteinte par un élément chutant ou projeté et la surface de la zone exposée à la chute ou à la projection.

Intensite	DEGRE D'EXPOSITION
Exposition très forte	Supérieur à 5%
Exposition forte	Compris entre 1% et 5%
Exposition modérée	Inférieur à 1%

Les zones d'effet sont définies pour chaque événement accidentel comme la surface exposée à cet événement.

L'intensité des phénomènes dangereux a été calculée pour chaque type de turbines mais les valeurs les plus importantes des zones d'impact et des zones d'effets ont été retenues pour calculer l'intensité de ces phénomènes dangereux.

Par analogie aux niveaux de **gravité** retenus dans l'annexe III de l'arrêté du 29 septembre 2005, les seuils de gravité sont déterminés en fonction du nombre équivalent de personnes permanentes dans chacune des zones d'effet définies dans le paragraphe précédent.

Intensite	ZONE D'EFFET D'UN EVENEMENT ACCIDENTEL	ZONE D'EFFET D'UN EVENEMENT ACCIDENTEL	ZONE D'EFFET D'UN EVENEMENT ACCIDENTEL	
GRAVITE	ENGENDRANT UNE EXPOSITION TRES FORTE	ENGENDRANT UNE EXPOSITION FORTE	ENGENDRANT UNE EXPOSITION MODEREE	
« Désastreuse »	Plus de 10 personnes exposées	Plus de 100 personnes exposées	Plus de 1000 personnes exposées	
« Catastrophique »	Moins de 10 personnes exposées	Entre 10 et 100 personnes exposées	Entre 100 et 1000 personnes exposées	
« Importante »	Au plus 1 personne exposée	Entre 1 et 10 personnes exposées	Entre 10 et 100 personnes exposées	
« Sérieuse »	Aucune personne exposée	Au plus 1 personne exposée	Moins de 10 personnes exposées	

INTENSITE	ZONE D'EFFET D'UN EVENEMENT ACCIDENTEL ENGENDRANT UNE EXPOSITION TRES FORTE	ZONE D'EFFET D'UN EVENEMENT ACCIDENTEL ENGENDRANT UNE EXPOSITION FORTE	ZONE D'EFFET D'UN EVENEMENT ACCIDENTEL ENGENDRANT UNE EXPOSITION MODEREE
« Modérée »	Pas de zone de létalité en dehors de l'établissement	Pas de zone de létalité en dehors de l'établissement	Présence humaine exposée inférieure à « une personne »

L'annexe I de l'arrêté du 29 Septembre 2005 définit les classes de **probabilité** qui doivent être utilisées dans les études de dangers pour caractériser les scénarios d'accident majeur :

Niveau	ECHELLE QUALITATIVE	ECHELLE QUANTITATIVE (PROBABILITE ANNUELLE)
A	Courant Se produit sur le site considéré et/ou peut se produire à plusieurs reprises pendant la durée de vie des installations, malgré d'éventuelles mesures correctives.	P >10 ⁻²
В	Probable S'est produit et/ou peut se produire pendant la durée de vie des installations.	$10^{-3} < P \le 10^{-2}$
С	Improbable Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité.	$10^{-4} < P \le 10^{-3}$
D	Rare S'est déjà produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité.	$10^{-5} < P \le 10^{-4}$
E	Extrêmement rare Possible mais non rencontré au niveau mondial. N'est pas impossible au vu des connaissances actuelles.	≤10 ⁻⁵

RESULTATS DE L'ETUDE DES RISQUES

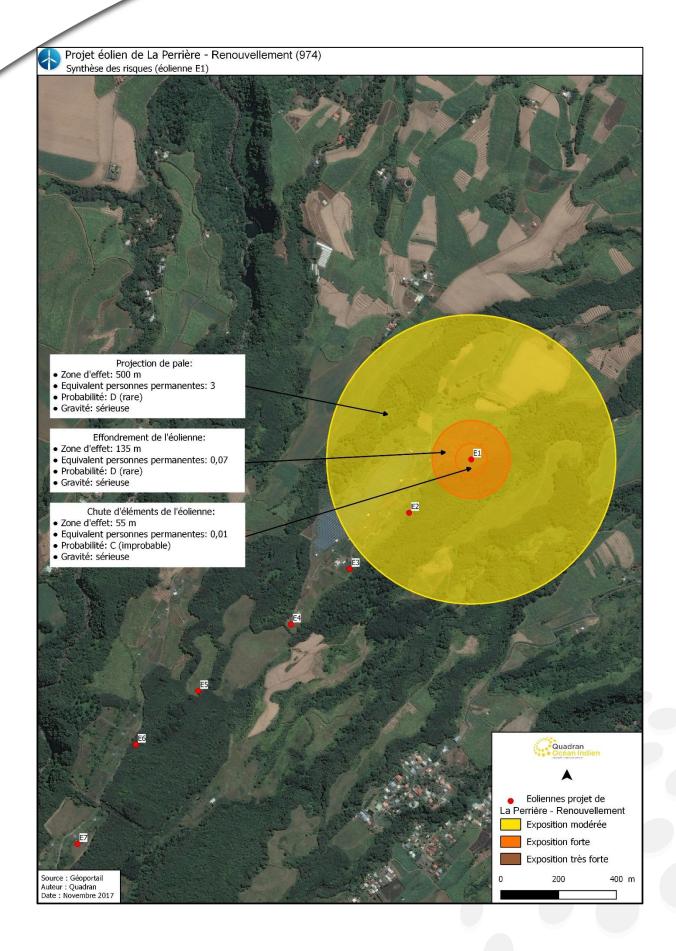
Le tableau suivant synthétise, pour chaque événement redouté central retenu, les paramètres de risques : la cinétique, l'intensité, la gravité et la probabilité. Ces paramètres ont été déterminés à partir du guide technique de l'étude de dangers cité précédemment. Les éoliennes ayant le même profil de risque sont regroupées.

	SYNTHESE DES SCENARIOS ETUDIES									
Scénario	Eolienne	Zone d'effet	Cinétique	Intensité	Probabilité	Gravité	Référence			
Effondrement de l'éolienne	E1, E4, E5, E6, E7, E8, E9	135 m	Rapide	Forte	D (Rare)	Sérieuse	01 a			
de i eolienne	E2, E3	135 m	Rapide	Forte	D (Rare)	Importante	01b			
Chute d'éléments de l'éolienne	a I F1 à F9 I 55 m I Ranide I Forte I		C (Improbable)	Sérieuse	02					
Projection de pale	E1 à E9	500 m	Rapide	Modérée	D (Rare)	Sérieuse	03			

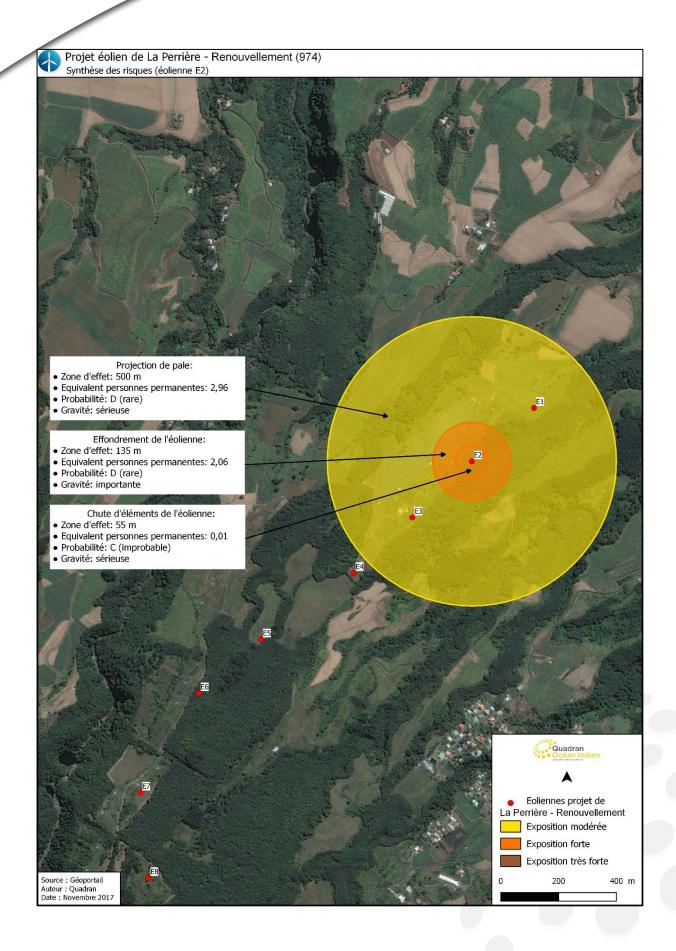
4	SYNTHESE DES SCENARIOS ETUDIES									
	Scénario	Eolienne	Zone d'effet	Cinétique	Intensité	Probabilité	Gravité	Référence		
	Incendie du dispositif de stockage	DST 1 & 2	Périmètre de 35 m	Lente	Modérée	D (Rare)	Sérieuse	04		

L'ACCEPTABILITE DES RISQUES

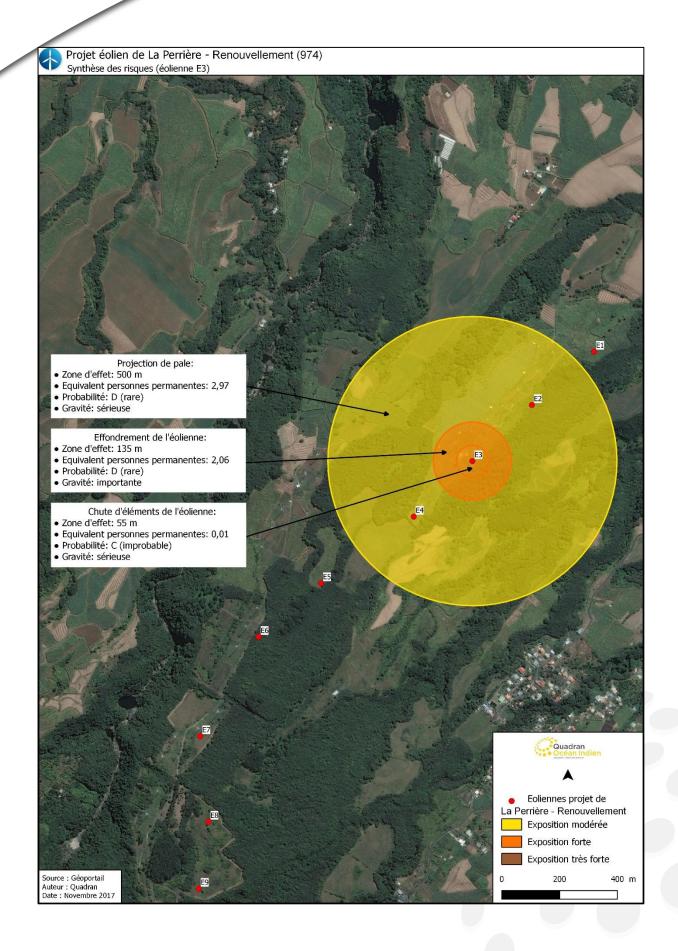
En croisant la probabilité et la gravité des scénarios retenus dans le cadre de l'analyse préliminaire des risques, pour chacun des scénarios identifiés précédemment, il est possible de déterminer l'acceptabilité des risques potentiels générés par chacune des 9 éoliennes et les dispositifs de stockage projetées grâce à la matrice de détermination présentée ci-après.

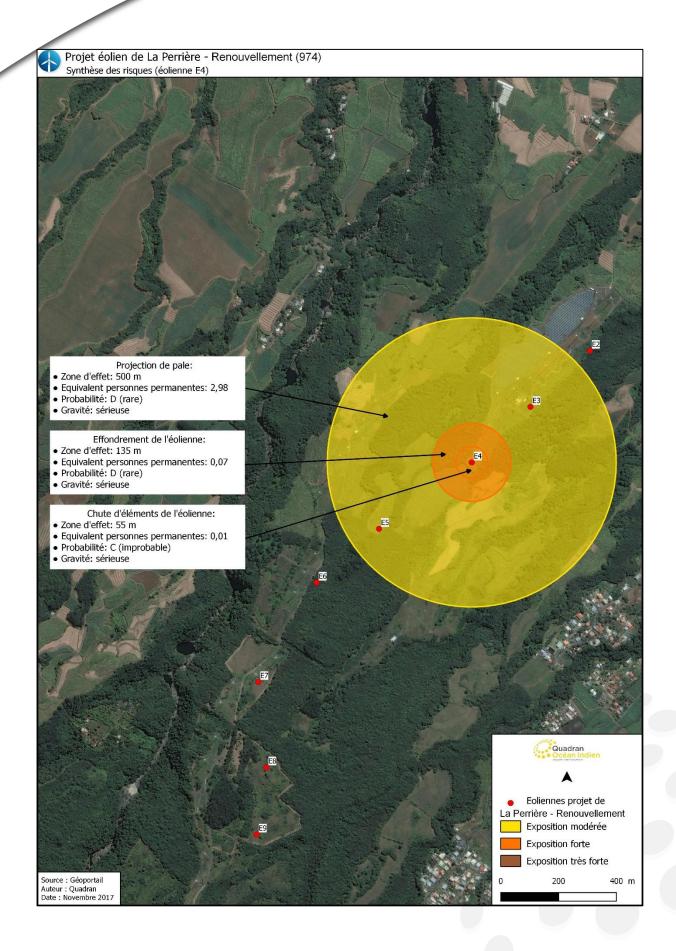

GRAVITE DES	Classe de Probabilite						
CONSEQUENCES	Е	D	С	В	А		
DESASTREUSE							
CATASTROPHIQUE							
IMPORTANTE		01b					
SERIEUSE		01a; 03; 04	02				
Moderee							

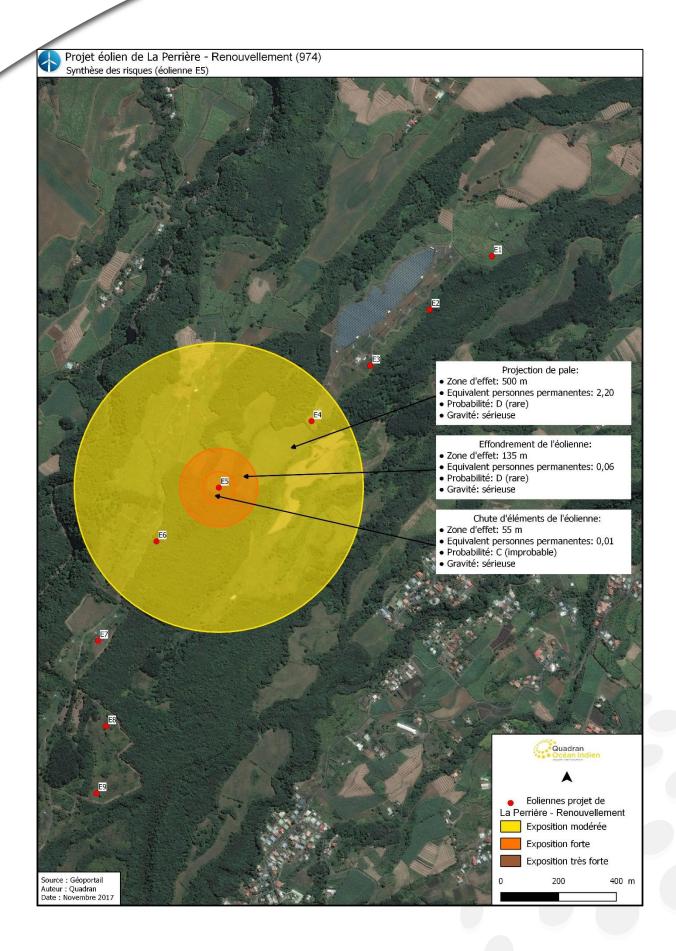
Légende de la matrice :

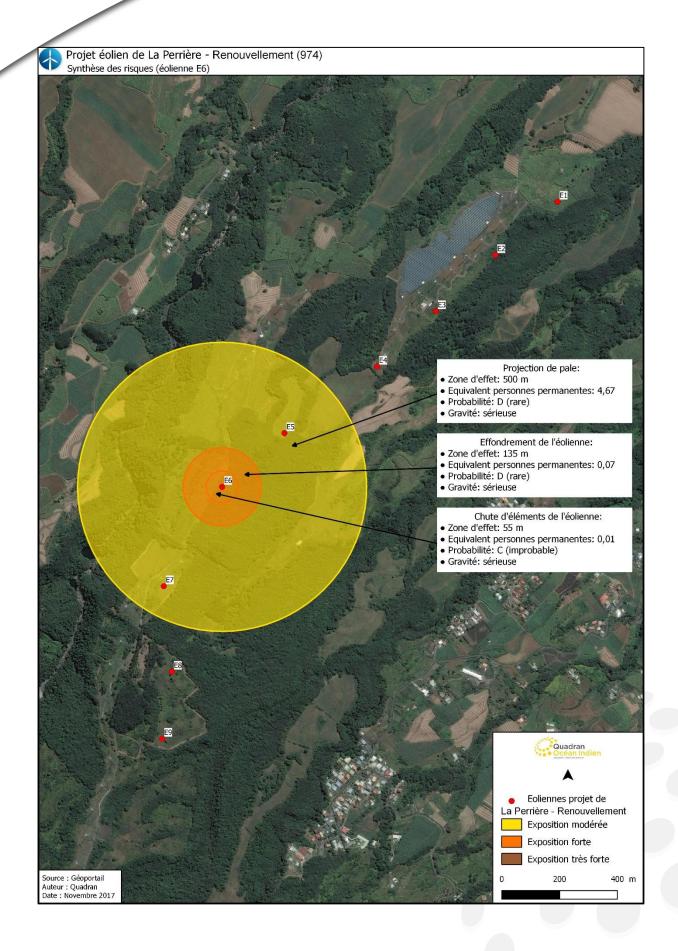

NIVEAU DE RISQUE	COULEUR/ ACCEPTABILITE
RISQUE TRES FAIBLE	Acceptable
RISQUE FAIBLE	Acceptable
RISQUE IMPORTANT	Non acceptable

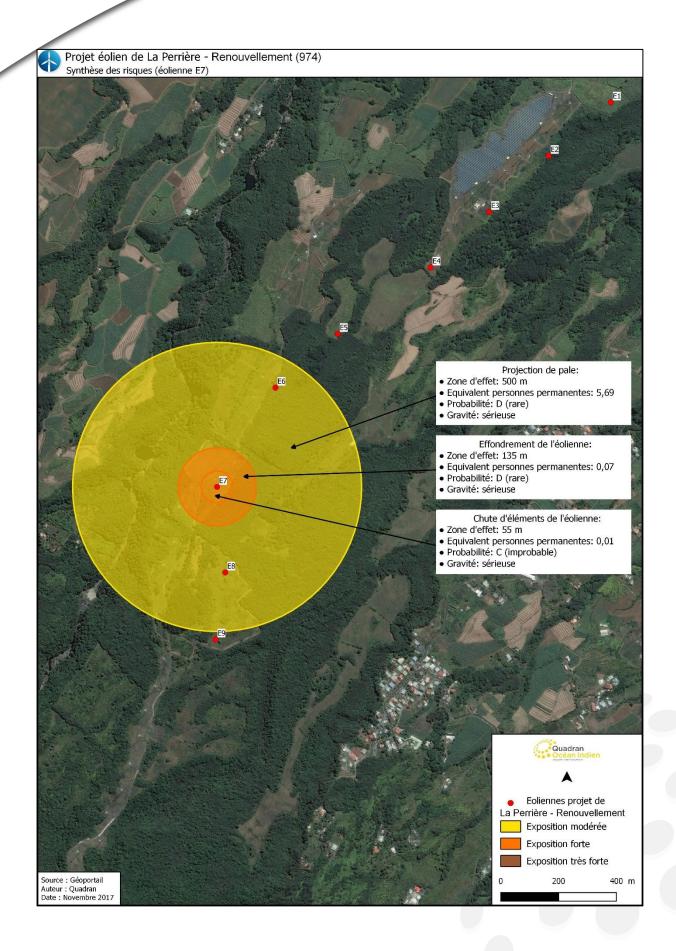
Les résultats de l'étude détaillée des risques ont permis de démontrer que tous les risques identifiés, et cela pour l'ensemble des éoliennes du projet éolien de La Perrière - Renouvellement, sont jugés « acceptables ».

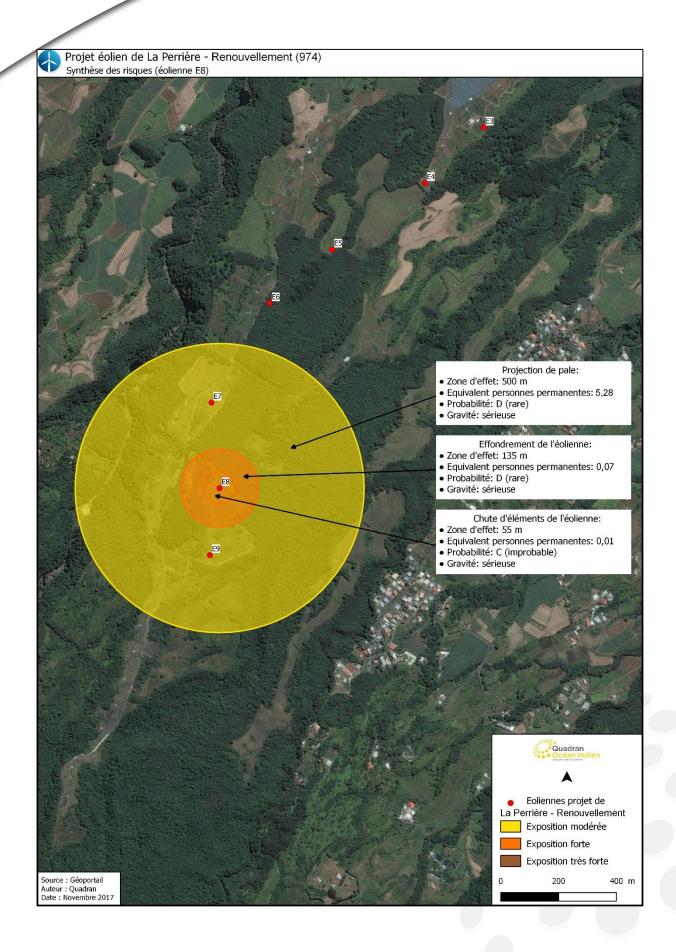


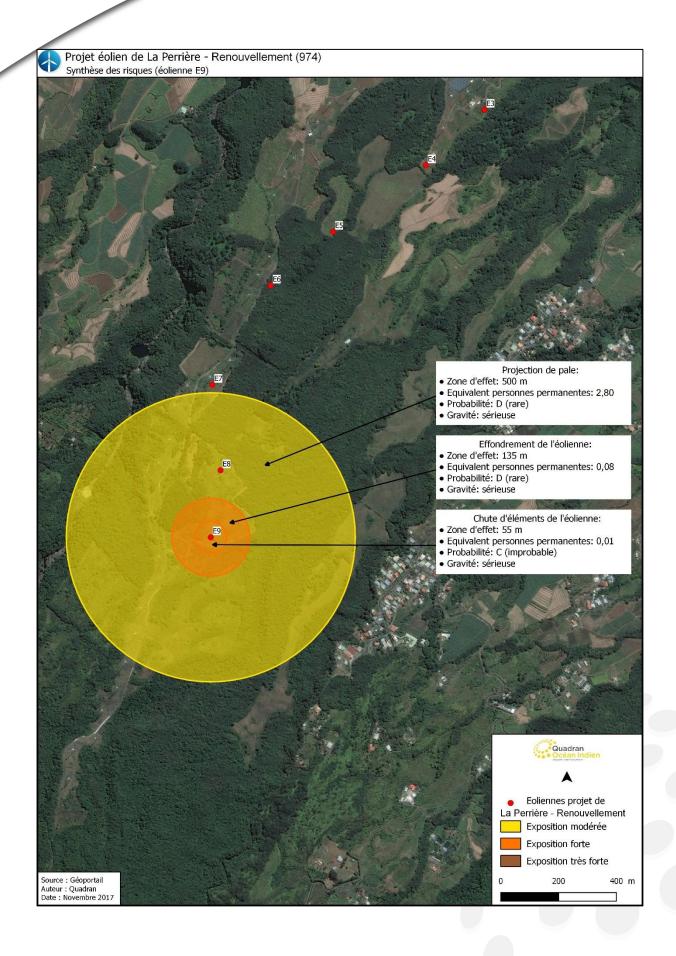


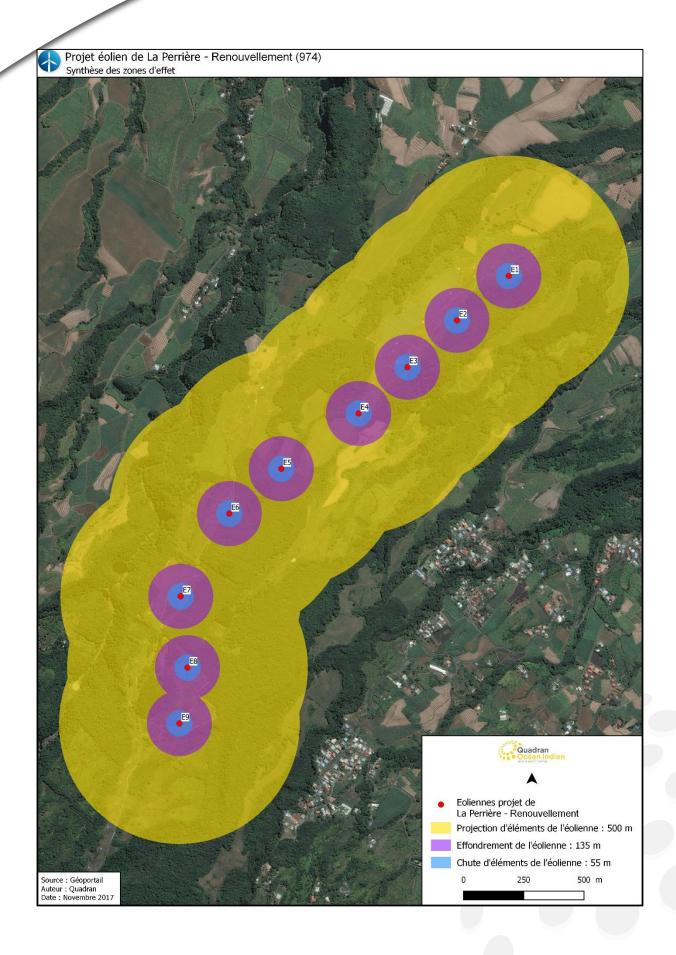












VIII. CONCLUSION

Conçu dans le respect de l'environnement et de la réglementation en vigueur, l'étude de dangers du projet éolien de La Perrière - Renouvellement s'est attachée à recenser les diverses infrastructures et activités présentes dans l'environnement des éoliennes sur le site, et à rendre compte de l'ensemble des démarches réalisées pour concevoir le projet, analyser les dangers inhérents et présenter les mesures de sécurité prises.

Les différentes activités et infrastructures, présentes dans la zone d'étude des 500 m autour des éoliennes, ont fait l'objet d'une attention particulière afin de déterminer le niveau de risque pour chaque éolienne. Ainsi, la surface agricole, les fréquentations des routes et chemins, ont été répertoriés et comptabilisés pour permettre d'affiner l'intensité et la gravité par type d'accident, développées dans l'analyse des risques.

Le recensement des potentiels de dangers et cette analyse de l'accidentologie ont permis de répertorier et classer les différents types et occurrences de phénomènes, afin de retenir 3 scénarios majeurs redoutés dans la suite de l'étude de dangers pour les aérogénérateurs (effondrement de l'éolienne, chute d'éléments, projection d'éléments), ainsi qu'un scénario pour le dispositif de stockage (incendie des containers de batteries). L'analyse des risques a ainsi pu rendre compte pour chaque phénomène étudié du niveau de risque associé à chaque équipement dans son environnement.

Les calculs précis effectués pour chaque éolienne et pour le dispositif de stockage, dans les périmètres définis pour chaque scénario retenu dans l'analyse des risques, ont permis de définir comme acceptables les risques d'accidents. Il est important de noter que la plupart des éléments nécessaires aux calculs des zones d'impacts ont été majorés afin de ne pas sous-estimer l'intensité et la gravité des phénomènes retenus dans l'analyse des risques.